CHAPTER 5 : THE VELOCITY FIELD UPSTREAM FOR THE ORIFICE
FLOW OF A POLYMER SOLUTION.

5.1. Introduction

As it has already been stressed previously, contraction flows have received
considerable attention by various authors. They are encountered in many industrial
applications involving polymer melts and solutions. They are also of a great scientific
interest, because they involve both shear and extension and they serve as excellent
problems for the numerical simulation of non-Newtonian flows.

The dominance of shear or extension in such flows depends on the contraction
ratio, the flow regime and, of course, on maierial properties. The nature of the fluid is a
very important parameter and the flow pattern varies enormously depending on whether
the fluid is Newtonian or shear-thinning, whether it is elastic or inelastic, etc. But, in
general, extension is dominant in the central flow core region whereas shear dominates
at the wall, on the corners of the contraction as well as far upstream the contraction.

The knowledge of the velocity -distribution is essential for the good
comprehension of such flows. Collins and Schowalter [1], determined the behavior of a
power-law fluid in the entry region by applying boundary layer theory principles. They
provided estimates of the shape of the velocity profile as a function of the power-law
index. _

For a shear-thinning power-law fluid flowing through a tube of circular section,
the velocity field is :

_ Bn+hHQ +L .
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where the cylindrical polar coordinates (r, 8, z) are considered and z is the flow
direction. Q is the flow rate, R is the tube radius and n is the power-law index.

Cogswell [2] and later Binding [3], in their analyses of the contraction flow of
power-law liquids, assumed that, in such flows, the distribution of the velocity
component in the flow direction would be approximately that of eq. (5.1). Sufficiently
far upstream, R would be equal to the upstream tube radius and near the contraction
plane it would be the radius of the envelope of the fluid that will pass through the
contraction R= R(z), Binding showed that if eq. (5.1) is valid, then the continuity
equation can be used to derive the radial velocity component :
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The structure of the upstream field implies also :
Ug =0 (5.3

Many authors provided experimental measurements of the velocity in.
contraction flows. Brocklebank and Smith [4] used stroboscopic streak-line
- photographs for velocity measurements and -deduced the entry length in a pipe. The
same technique was used by -Boger and Ramamurthy [5, 6] who determined centerline
profiles and developing profiles of the axial component for Methocel and Separan
solutions, They found uniform profiles at-the entrance for 0.585 < n < 1 and for
relatively high Reynolds numbers (20 < Re < 1942). They also verified the theoretical
commonly accepted value (ex. [1, 19]) for the entry length L. :

Le _g.122Re (5.4)
R
for 1 <Re < 1500.

Cable and Boger-[7] used the same method to study the velocity field in stable
flow of viscoelastic aqueous Separan solutions. They found significant -qualitative
differences between veloeity profiles in the vortex. growth and divergent flow regimes
which they have observed. During the vortex growth regime the axial profile
overdeveloped even before the detachment plane of the vortices. In the vortex region it
relaxed back to become fully developed downstream.

Binnington et at [8] provided profiles on the axis for-a dilute Separan solution in
a 4:1 contraction, obtained by the help of speckle imaging pictures. They shewed that
this profile started to differ from the Newtonian one above a critica! value of the shear
rate.

The Laser Doppler Velocimetry technique has proven to be a very helpful tool
for the determination of the velocity fields of transparent polymeric liquids. Busby and
McSporran [9] used a Laser anemomeiry technique (1976) in a flow of an aqueous
0.75% polyacrylamide (PAA) solution into a re-entrant tube geometry at Reynolds
numbers in the range 100-500. They found that the major velocity rearrangements
occurred only a few diameters upstream and downstream though a much longer distance
was necessary for fully developed downstream conditions. They also found that the
velocity varied in an oscillatory manner with the axial distance from the entry plane.
Finally, their calculations of the "time of flight" along the central streamline confirmed
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that the major rearrangements suffered by the fluid occurred during a time period short
enough for memory effects to become significant.

This technique has been developed more in the last fifteen years and much better
set-iips have been used. Ramamurthy and McAdam [10] presented LD A measurements
on the entry region of a capillary rheometer. They confirmed the results of Cable and
Boger showing that flow instabilities begin above the critical value of 0.03 for the
Weissenberg number.

Hasegawa and Iwaida [11] found nearly constant stretch rates € at the vortex
region of an orifice flow of dilute polyoxyethylene (PEO) solutions. This value of the
stretch rate was such that : € tze) = 0.5, where tg is the generalized power-law Maxwell
model relaxation time. They showed that the maximal value of the stretch rate may
occur at a distance equal to many diameters upstream the.contraction plane.

Xu et al, [12] and Wunderlich et al, [13] carried out LDA measurements on
flows through planar contractions. Xu et al. tested a 3% solution of PDMS into a PDMS
oil. Their results in a planar geometry are similar to those of Cable and- Boger :
deceleration in the axis during the divergent flow regime and off-center maxima. They
have shown significant asymmetries in the flow due to slight asymmetries in the
geometry. S : : :

Wunderlich et al. showed detailed profiles with off-center maxima and their
development as one approaches to the contraction plane for very dilute (25 and 50 ppm)
polyacrylamide (HPAM) solutions.

Lawler et al. [14] presented measurements of the variation of the velocity with
time for a flow of a PAA solution. It varied periodically at regimes just before the
appearance of the vortices, for Weissenberg numbers 0.8 < We < 1.2, Similar quasi-
sinusoidal periodicity of the velocity has been presented by McKinley et al. [15] with a
polyisobutylene (PIB) solution. They have also presented off-center maxima in-the
divergent flow regime and a study of the influence of the contraction ratio on the vortex
size and on the stability of the flow.

Raiford et al. {16] showed measurements on concentrated PIB solutions for
various Reynolds and Weissenberg numbers. At highregimes the curve of the velocity
profile of the axial component presented a discontinouity in the region of the flow axis :
flow is proven to be divided into an accelerating core and an outer region where the
flow retains its upstream profile.

In the present section we present LDA measurements on a contraction flow of a
polyacrylamide (HPAM) solution of a very low concentration (100 ppm). It is a non
shear-thinning solution in a thick solvent of glucose / water (described in an earlier
section). The flow curve of this solution through the orifice of 1.2 mm has been
previously determined [17, 18]. Our velocity measurements have been carried out at
steady state conditions in the vortex growth regime.
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The experimental set up for the orifice flow has been previously described
(section 2.4.1). In section 5.2 we describe the LDA technique and in section 5.3 the
experimental equipment used. The measurement techniques used to obtain both the
axial and the radial components are presented in section 5.4. The results are given in
section 5.5 and the conclusions in 5.6.

5.2. The Laser Doppler Velocimetry technique
5.2.1, The Doppler effect

The Laser Doppler Velocimetry (LDV) technique, is based on- the optical
Doppler effect. Let us consider a monochromatic light beam-of frequency foand
wavelength Ag which is propagated following a direction represented by the unit vector
ip (Fig. 5.1) and a particle moving with a velocity V, which is illuminated by this beam,
This particle will diffuse light in all-directions with a frequency fs dependent on the
observation angle in the following way:

fa=tfo+¥ (- 1o 5.5)
M 0

%

ol

Figure 5.1.
The difference fp = f4 - fp;, called the Doppler frequency, is thus proportional to

the velocity of the particle. The relationship (5.5) is valid for light propagation in
vacuum, In the case cf a medium of a refraction index n, it is :

=¥ (5. & (5.6)
Ao

In the case where the particle is simultaneously illuminated by two beams, it
diffuses light coming from both beams (Fig. 5.2).




For any direction i;, the frequency of the light diffused relative to the first beam

is:

fy = fo+r L (i - o) 1)
"

Figure 5.2.

and the light relative to the second one :

£ =ty +%(i§ i (5.8)

The composition of these two coherent light sources leads to a light with a Doppler
frequency

fo=1;-f; =%(i‘6 i) (59)

Thus, this Doppler frequency is proportional to the component of the velocity of the
particle that is perpendicular to the bisection of the angle 6 which is formed by the

incident beams ip and ig :

fp=2 sinfv (5.10)
Ao 2

In this case the frequency does not depend on the direction of the observation,
though this is not true for the intensity of the diffused light.

5.2.2, Laser Doppler Velocimetry with interference fringes.

The LDV technique with interference fringes is based on the principle that is
described in the previous section. It is an optical non-invasive method of measuring the
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velocity of a fluid by means of the light diffused by fine particles suspended on the fluid
flow. It is thus necessary that the particles follow perfectly the flow.

A beam of monochromatic and coherent light is emitted from a laser source and
it is splitted into two beams which are then converged. The point of the convergence of
the 1wo beams forms the measuring volume, an ellipsoid of revolution. A schematic
representation of the intersection of this ellipsoid with the major plan of the
measurements is shown in Fig. 5.3.

Figure 5.3.

The three dimensions of this ellipsoid are evidently-the following :

2a=—d (5.11) 2b=—d__ (5.12) 2c=d (5.13)
sing— cos%

where d is the diameter of the beam in the convergence point. It is :

d=4fA (5.14)

nd

where: f is the focal distance of the convergent lens, .
A is the wavelength of the light beam in the medium of refraction index n, that is
A= Ao/n,
Ag is the wavelength in the air,

d is the beam diameter as provided by the laser and
0 is the intersection angle of the beams in the medium,
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The measuring volume is :
Usg—nbza (5.15)

since b and c are practically equal. -

A network of fringes is developed inthe-ellipsoid consisting of a set of parallel
planes alternatively dark and luminous. These planes are parallel to the bisection of the
angle between the two beams and perpendicular-to the plane formed by them. Each
particle that passes through this network with a velocity V diffuses light only when

-~ traversing a luminous fringe. The diffused light is thus modulated with a frequency fp
proportional to the component of the velocity V which is perpendicular to the
interference planes. Respecting the notation defined in Figure 5.4, the interfringe Ay is

Ay =—M0 (5.16)
in8
2 sin >
and the Doppler frequency :
o= o2sin® Y 5.17)
Ay %

'

Figure 5.4.

The diffused light is collected by a photomultiplier which transforms it into an
electric signal. This signal is treated in order to deduce the Doppler frequency and thus,
the corresponding velocity component.

An ambiguity exists though as far as the sign of the measured velocity
component is concerned : the same frequency may correspond to a positive or negative
velocity component. This may introduee a source of error in a case where the velocity
may take both positive and negative values. This might be for example the case in the
vortex region of a polymer solution upstream an orifice.
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Figure 5.5.

Considering thus the histogram of Fig. 5.5.a, where both positive and negative values of
the velocity exist, one can see that this histogram will be folded up and the resulting
measured velocity Vi, will be higher than the real one V, (Fig. 5.5.b).

This error is avoided by increasing the light frequency by a constant very high
value (40 MHz) which is considered later in the processing of the measurements. This is
done.by introducing a Bragg cell in the trajectory of one of the beams.

Another important point for the precision of the method is the ratio of the
diameter of the particles to the interfringe Ay : the distribution of the intensity in the
measuring volume depends on the position, since the intensity of the incident light is
gaussian. The consequence of this is that-the intensity of the light diffused by a particle
depends on its position in-the measuring volume. For a particle which has very small
dimensions with respect to the interfringe, the diffusion of the light will follow the
variation of the intensity in-the network. On the other hand, for a particle of dimensions
equal or higher than the -interfringe the mean value of the intensity is practically
constant and independent on its position. Thus, the particles should be big enough to
avoid intensity dependence on the position on one hand, and small enough to ensure the
fact that they will perfectly follow the flow on the other.

The quality of the Doppler signal depends also on the trajectory of the particle in
the measuring volume as well as on the existence of eventual parasitic lights. The
velocity gradients within the measuring volume play a very important role on the
precision of the measurements.
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5.3. The experimental equipment.

The experimental equipment is shown schematically in Fig. 5.6. A laser source
provided a laser beam which was splitted in two into the photo multiplier (PM). The
same PM received the Doppler signals which were processed by a spectrum analyzer. A
computer with a special software, directed the operations. The signal was controlled by
an oscilloscope and a recorder.

The laser source is.a Spectra Physics Model 2016 Argon lon laser (maximum
power 5 W). A wavelength of 514.5 nm (green) was used, which reduced the maximum
power to 2 W. The power used during our experiments varied between 200 and 500
mW.,

The photo-multiplier probe (diameter 60 mm) gave a focal length of 160 mm
with a beam separation of 38 mm, the angle 8 being 0.236 rad. The three axes of the
ellipsoid formed by the-measuring volume were : 2a = 640 pm, 2b =2¢ =75 pm.

The PM was able to move in three directions with the help of three step motors.
The calibration factor C,resulting from eq. 5.10, is in our case :

flow
PM
Laser source
BSA __@ oscilloscope
o UW recorder
computer
Figure 5.6.
A m
= 1 = 2 = S5

C I 2'.18_2MHz (5.18)

in8
sin
This calibration factor corresponds to the interfringe distance Ay :

Ay =2.182 pm (5.19)
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Thus, the number of fringes in the intersection region is :

Ne=2b. =134 (5.20)
Ay

5.3.1. The signal processing.

The processing of the signal was done by the method of the frequency -or
spectrum analysis. This analysis derives the Doppler spectrum or the probability density
function of the Doppler frequency.

The range of Doppler frequencies is scanned by mixing the Doppler signal with
a sigﬁal of an oscillation frequency f;. The mixed signal is then viewed by a filter of
center frequency f. and bandwidth BW. The signal that passes through the filter is thus :

fc+(B—;V)-' zfsifpzfc-(B;m (5.21)

A number of N samples collected of the electric signal constitutes a digitized
burst. N is called the record length. The oscillation frequency f; is also called the
sampling frequency. In our case the sampling frequency with which the spectrum
analyzer (BSA) operates is :

f, = 1.5-(BW) (5.22)

The time interval during which a burst is collected is called the record interval

R;:
R =N (5.23)
fs
The number of fringes observed by the photo multiplier is then :
Nf.obs = fup R; (5.24)
where :
fup = fo + % (5.25)
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For velocity values confined between relatively narrow limits and having always
the same sign with respect to the bisection of the two beams, the shifting of the
frequency with the Bragg cell, explained in the previous section, is not necessary. In
this case, the lowest possible absolute value of the velocity to be measured with our
equipment is 0.265 mm/s (correspbnding to 121.5 Hz). Measurements in the secondary
flow-region were carried out using the frequency shift facility (40MHz) since both
positive and negative values are encountered in this region.

The center frequency used was zero, and the bandwidth frequency was chosen
“for each profile in a way such that to have the best signal quality. The bandwidth varied
between 7.8 kHz and 250 kHz, though most of the measurements were taken with BW
= 31.25 kHz. The sampling frequency is then : f; = 46.875 kHz, and as the record length
was chosen N = 64 the record interval was R; = 1.365 ms. The number of fringes
observed by the photo multiplier has thus been 21. This avoided undesirable
contribution of the outer fringes, where the visibility is bad.

The signal gain which determines the amplification of the input signal was
adjusted together with the bandwidth and took values between 20 an 40 dB. The high
voltage to the PM varied in general between 1000 and 1800 V.

The particles that pass through the measuring volume should have dimensions
comparable to the interfringe, in order to avoid the influence of the particle position to
the signal. We have used iriodine particles of a diameter of 2 - 3 pm, which is
convenient for our interfringe distance (Ay= 2.18um).

The Doppler signal was controlled by a Schlumberger type 5013 oscilloscope.
The precision of the equipment has been checked by recording series of the bandpass
filtered Doppler signal (2—‘ -fo+ fD), corresponding to low, well-known velocities, These

velocities corresponded to the centerline velocity of water flow through a long tube of a
diameter of 9 mm. The signal was recorded in a Sefram type 8211 recorder. With a
bandwidth BW=1.95 kHz which gives (eq. 5.22) a sampling frequency of fs= 2.925
kHz and with a flow velocity of 0.2 mm/s, comresponding to fp= 0.091 kHz, the
frequency of the signal (% Sf,+ fD) varied with time within 0.01 kHz which gives a

precision of 0.022 mmy/s.

The operations were guided with a Hewlett Packard Vectra QS/16S computer,
with the help of an appropriate software,

Particle concentration was high enough so, for each measurement point a
number of bursts as high as 1000 was taken in, generally, less than 60 seconds.
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5.4. The measurement technique.

When the laser beams pass from the air in another medium, they are refracted.
This does not influence the calibration factor, i.e. the proportionality factor between the
measured velocity and the Doppler frequency (eq. 5.18). Considering the measuring
volume in a medium of refraction index n, the interfringe will be:

Ay=—A - __h_py (5.26)

and thus it will have the same value as that in the air. The calibration factor being
proportional to the interfrin-gc, no further correction is needed. But what has to be
considered is the fact that the measuring volume is not displaced in the flow region by
the same distance that the PM is displaced in the air :

The beams are refracted twice as they pass from the air to the plexiglass tube and
consequently to the solution (Fig. 5.7). Let us assume the PM to be ‘horizontal, the
position "1", where the center of the measuring volume is on the separation surface of
the Plexiglas tube from the flow region, and the position "2", where the measuring
volume is situated at a distance d" from this separation surface. The corresponding
distance by which the PM was displaced is d', and the point where each beam intersects
with the air-Plexiglas intersection surface has moved byd. Itis:

1, 8in 8, = ng sin B = n; sin 6; (5.27)

In our case 0,=0.236rad/2=0.118rad , and from eq. (5.27) we find :
8; = 0.0812rad.
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air,n,=1 plexiglass , n, = 1.49 solution , ng = 1.45

/ —————— positiol'l 1

position 2

Figure 5.7.

It is easily shown for the displacements d" and d' that:

_d
d' _tanf; _tan6, (5.28)
d _d _ tane

tan 9,

which in our case is : d"/d' = 1.457. Since the angles 0, and 0 s are very small, one could
arrive at approximately the same result by :

_%: _tan @, - si'n 0s _ ns = 1.45 (5.29)
tan ©; sin 6

Our measurements covered the vortex region upstream an orifice (Fig. 5.8). For
distances higher than 3 mm from the orifice plane (z < -3), measurements could be
taken by keeping the PM horizontal. The component parallel to the flow direction (Uz)
was thus directly measured. The angle o that the flow line formed with the r-direction
has been measured for each measurement point, in a picture of the flow about 40 times
the real dimensions. The component U; was then obtained by :

U, =Yz (5.30)
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Figure 5.8.

For measurements near the orifice plane, the PM was inclined by an angle of 65/
2. In'this case, the value of the velocity was first calculated

U=—Un (5.31)

Slﬂ(a 2

and the two components were then derived :

U,=Usina and U;,=Ucosa (5.32)

5.5. Results

The fluid

The velocity field of a polymer solution is examined in this section. It is a 100
ppm polyacrylamide solution in a glucose/water syrup (80%/20% respectively in
weight). The polymer is a sample of partially hydrolysed polyacrylamide (HPAM)
commonly used in oil recovery (Dow P700). Its molecular weight was found 4.1-106
g'mol-! by the GPC method (annex D).
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The solution was prepared by mixing together polymer-water and glucose-water
mixtures of the necessary composition in order to obtain the desired final composition.
The fluid contained also NaCl (20g/lt), in crder to obtain a coiled rest state

configuration.

The orifice flow

The shear viscosity of this solution is almost independent on shear rate (1.5 Pas).
Tts flow curve through the orifice of ®= 1.22 mm was extensively studied in [17]. Flow
conditions corresponding to the beginning of the intermediate regime (vortex growth)
were chosen (qv= 74.0 mm3/s, U= 63.3 mm/s). The flow pattern is shown in Fig, 5.21.
The vortices have been asymmetric due to a slight asymmetry in the flow geometry. As
mentioned in section 1, Xu et al. reporied also significant asymmetries in the flow
pattern due to slight asymmetries in the geometry.

Measurements were first taken with the solvent, that is, with the mixture of
glucose and waier before we passed to the solution,

5.5.1. Measurements on the solvent

The theoretical solution of the Stokes problem for the creeping flow of an
incompressible Newtonian fluid through a circular hole in an infinite plane wall [18], is
based on the Stokes stream function :

~Q 1.
Y= P (1-cosn) (5.33)

where 1] is one member of the oblate spheroidal coordinate system (€ , ) defined as :

r= % @ cosh sinn z = = @ sinh& cosn (5.34)

1
2
The coordinate surfaces of constant 1 and, hence, the stream surfaces of constant \, are
confocal hyperboloids of revolution. The surfaces of constant § are oblique spheroids.
The cut-off of the surfaces of constant \ in a central plane are shown schematically in
Fig.59:
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Figure 5.9.

These hyperbolas represent the flow lines. The velocity profile on the centerline is then
given by :

U,@=29_ 1  U@__ 3 (5.35)
T d 1 +(2—z)2 U 2438 (—z—)2
(1)) (6]

where U is the average velocity at the orifice. This theoretical profile can be used as an
approximation for contraction flows of Newtonian liquids in the case of a high
contraction ratio and close to the contraction level,

The contraction ratio in our case is 20 mm / 1.22 mm = 16.4. The centerline
profile of our solvent is shown in Fig, 5.10. The flow rate was very close to the one
chosen for the solution. At a point as close as possible to the contraction plane the
velocity has the expected value of 1.5 times the average value. It matches perfectly with
eq. 5.35 for z/® < 0.7. For distances of the orifice higher than that, the equation deviates
as it tends towards a zero velocity. At about z/® = 20, U, has the upstream developed
value of twice the average velocity in the upstream tube.




5.5.2. Measurements with the solution.
5.5.2.1. The developed profile upstream.

The profile of U, along the r-direction was measured at a section far upstream
the orifice plane (z= -50 mm, 2z/®=-83.3), one of the two sections between which the
differential pressure was measured. The profile, non-dimensionalized with the average
velocity in the upstream tube Uy, is compared in Fig. 5.11 with the Poiseuille velocity
distribution :

f=2li- ) 520

where Ry, is the upstream tube radius. As n = 1 for this fluid, its developed profile
should not differ from that of a Newtonian fluid. This result shows that the velocity
profile at this section is not disturbed by the existence of the orifice.

5.5.2.2, The axial profile. .

The evolution of U, on the flow axis was also measured. It is compared in
dimensionless form with that of the solvent in Fig. 5.12. As expected, the presence of
the vortices results in much higher velocities near the contraction plane. On the other
hand, the velocity is undisturbed closer upstream than in the case of the solvent : Until
about 13 diameters upstream: U,= 2-U,,.

In the region between -10® < z < -5@ the slope of the log-log plot of the

velocity is about 3, which leads to the conclusion that :

U,=(-z}? and é=ddg==(-z)-4 (5.372)

that is, the stretch rate on the centerline varies as z4.
In the region -2@ < z < -0.5®, which is the minimum distance from the orifice

attained, a slope of about 1/4 was found, indicating that near the orifice the stretch rate
varies as z- (54) ;

&= (-z) &M (5.37b)
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The profile is shown in lin-log form in Fig. 5.13. This representation shows that
an exponential law fits the velocity variation for z/® > 6. At z=-2,2 there is a sudden
slope change in the curve which in the picture of the flow seems to correspond to the
point where flow lines become almost parallel to the vertical axis. From the Fig. 5.13
the following empirical laws are obtained :

6>Z>2 %=1O7c'°'59j (5.38a)
22250 = Ye=105e 0%y (5.38b)

An estimation of the evolution of the stretch rate with z can be obtained by

plotting AU, (Fig. 5.14). The high dispersity of the calculated stretch rate is due to the
Az

following fact: If one uses very small distances between neighboring points of the
velocity measurements, the uncertainty of the interval is added to the one of the two
velocity values. In the opposite case (high distance intervals), the evolutien of the
stretch rate is lost. The maximum stretch rate can also be calculated by direct derivation
of relations (5.38) :

6>2Z>2 o é=63.3e'°‘51i3'1
L61]

22250 — i—:=13.3c'0'24§3°1
o)

The corresponding curves are shown in Fig, 5.14. In the upper part of the converging
zone € increases from values close to zero at z/® = 10 up to a value of 23 s-1 at the
distance from the orifice where streamlines become almost parallel with the vertical.
The subsequent break in the U/z) curve corresponds to a sudden decrease of € and
subsequent much slower increase.

Profiles similar to the one of Fig. 5.13 are presented for polyacrylamide
(Separan) solutions of the same concentration range by Hasegawa and Iwaida [11]. The
distance of the breakpoint in the 'U-z(z) curve from the orifice plane increases with flow
rate.

In order to study the development of the axial velocity profile, we normalized it
with respect to the region included between the vortices. The dimensionless procedure
involved division of the velocity with the average velocity in the vortex region defined
by :




2
U, =1;—;U (5.39)

where Ry is the radius of the main flow region (Fig. 5.15). As the flow in our case was
asymmetric, the average value between both sides:

Ry tert + Ry i
Rv.avg - Jdeft > Jright (540)

. was taken into account in the Fig. 5.15. Further on (Fig. 5.18, 5.19 and 5.22), R, is
considered separately for each case (left and right).

Cable and Boger [7] presented the normalized axial profile of a shear-thinning
aqueous Separan solution of n= (.37 in the vortex growth_regime in a 4:1 contraction. It
increases from its developed value far upstream of (3n+1)/(n+1) to a maximum that
occurs at a point very close to the vortex detachment plane, then it decreases
monotonically until the same fully-developed downstream value. It obtains this value at
a fraction of @ upstream the contraction plane.

In our case the normalized U, (Fig. 5.15) increases in the same way until the
vortex detachment plane. It then decreases to a minimum of 2/3 at ®= -3.5, and then
increases again towards its developed value which has not been attained. It seems that
in our thin-walled submerged-jet configuration the profile at the orifice level is quite
homogeneous.

5.5.2.3. The profiles at upstream sections

The velocity was also measured at the same regime along upstream sections. As
previously noted, the vortex torus has been asymmetric. But the flow pattern remained
constant with time as it was shown by repeated pictures of the flow. Measurements
were taken at sections in the region -2 mm 2 z 2 -10 mm. The positions of these
sections in the flow pattern are shown schematically in Figure 5.16a. The radius of the
main flow region as a function of the distance from the orifice is shown in Fig, 5.16b.

The components U, and Uy have been derived by using the procedure described
in section 5.4, The profiles of the U, component are shown in Figure 5.17. We should
remark here the consequences of the asymmetry : at the section z= -10 mm for example,
the left side (represented with negative r values), is in the vortex region resulting in
negative velocities, while the right side (positive 1), contains only positive values.

In order to substantiate our data, an integration of the U component was
performed according to :
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Q=[ 271U, dr (5.41)
0

The values of Q deduced for each measurement section agreed with the measured flow
rate within +/-8.5 %. This agreement is considered quite satisfactory, taking into
account the fact that the relatively small velocity values-in the- vortex region- are
integrated over large surfaces.

In Figure 5.18 the axial distance is non-dimensionalized by the radius of the
main flow region Ry for each section. The asymmetry was taken into account by taking
different Ry values at each side. An important remark to-be made here is that at r/Ry=1
the U, values are far from being negligible, in contradiction with the suppositions of
Cogswell and Binding in their attempts to estimate- the extensional viscosity from-
contraction flow data. The ratio U(1)/U,(0) obtains values of more than 0.5 in some
cases, especially at the sections z= -6 mm and z= -4 mm which are halfway between the
vortex detachment plane and the contraction plane.

The normalized profiles-of Uy are presented in-Figure 5.19. The average velocity
defined by eq. 5.39 is used for this purpose. As previously mentioned, the same
normalization procedure has been used by Cable and Boger. They showed that the U,
component profile, overdeveloped in the vortex detachment plane, and relaxed back to
become fully developed again near the contraction plane, In the present experiments the
contraction ratio is much higher. The profile is indeed-overdeveloped at z= -10 mm
which corresponds approximately to the vortex detachment plane and Uz(0)/Uy= 48. It
relaxes back as one approaches the contraction plane but it is far from being fully
developed at z= -2 mm. This fact must be attributed to the much higher contraction
ratio,

The Uy component profiles are shown in Figure 5.20. We should remark here
that the asymmetry has more pronounced effects, especially in the middle vortex region
(z= -4 mm and z= -3 mm). At z= -2 mm, Uz= 0 within |{ <2 Ry, as the flow lines
followed perfectly the direction of the flow. Negative values-of Uy exist for|4 > 2 Rq as
the flow lines diverge abruptly to enter into the recirculatiomn region.

The lines of constant U, and Uy values in the vortex region are shown in Figure
5.21. The values plotted there represent mm/s. Green lines represent U, and red lines
U;. We notice once more that the velocity values in the inner side of the vortices are of
the same order of magnitude as those in the main flow region.

We have previously mentioned that the theories of Cogswell and Binding
concerning the derivation of the extensional viscosity from contraction flow data are
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based on the assumption that at each section of the main flow region the flow is fully
developed. This would mean that we should obtain a master curve by plotting :

Uz () I
U, 0 (&, 6.42)

for any z. This proved not to be the case in our measurements. We noticed though that
there seemed to be a shift in these curves which increased as one moved away from the
vortex detachment plane. We then considered the height of the vortices X (different for
each side), and plotted :

LAONE B2 5.43
0,0 (&, L G4

where L, is the vortex reattachment length.

The measurements at the different sections of the upper half of the vortices (-4 mm 2 z
2 -10 mm) matched together (Fig. 5.22). The asymmetry is again obvious in this master
curve.

The master curve of Fig. 5.22 shows that, in order to consider a velocity profile
in the upper region of the vortex, that is, in the region where the major velocity
rearrangements take place, one has to consider a radius.equal to :

RE),, (5i44)

z

_3
R2

rather than simply consider R(z). This is, of course, not valid for the lower region of the
vortex where the velocity profile is already almost rearranged (Fig. 5.23). As one
approaches the orifice, the velocity profile moves away from the master curve.

5.6. Conclusions.

In the present chapter, we have been interested in the velocity field upstream of
an orifice flow of a flexible polymer solution, The flow of that same solution has been
previously the object of extensive studies in our Laboratory [i.e. 17]. The flow regime
chosen to examine corresponds to the beginning of the vortex growth regime. The
contraction ratio (16.7) is very large.

The method of LDV has been used for the velocity measurements. After having
established the measurement technique from the optical point of view, measurements on
the flow of the Newtonian solvent (a glucose/water mixture of 80/20 w.) showed the
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evolution of its axial profile. This profile is in good agreement with the theoretical
solution of a flow through a circular hole for half a diameter upstream. At_higher
distances the theoretical solution predicts lower velocities, since it is valid for an
infinite contraction ratio.

Measurements with the solution at an upstream section (z/®@=-42), showed a
developed profile which followed the Poiseuille distribution for the flow of a
Newtonian fluid through a tube. This section represented one of the two points where
differential pressure measurements have been carried out whenever the submerged jet
configuration has been used throughout this work (chapters 2 and 3). Thus, the
undisturbed proﬁlcrcxistingr at this point validated the pressure measurements:

The axial profile has shown that_the maximal stretch rate {(about 23 s-1) occurs
about 2 diameters ﬁpstrcam, in the point where pictures of the flow have shown that-the
streamlines in the main flow region become almost parallel. This point is characterised
by a break in the Ujz) curve on the axis. This break point corresponds to a sudden
decrease of the rate of extension along the axis.

The axial profile normalized with the average velocity in the vortex region
proved to differ from that presented by Cable and Boger for the eentraction flow
through a tube : It presented a local minimum 3.5 diameters upstream.

The normalized transversal profile, overdeveloped at the vortex detachment
plane, relaxed back till z/®= -1.7. It was though far from being fully relaxed-at this
distance from the orifice,

Profiles at sections in the vortex region proved that, in the limits of the vortex
the velocity can attain values until 60% of the velocity on the axis and cannot, thus, be
neglected. A similarity of all profiles of the axial component in the upper half of the
vortex torus has been found. This fact indicated that a radius of the main flow region,
modified by a parameter which takes into account the relative position in the vortex
should be considered in future modelization of the velocity profile.
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measurement sections

Figure 5.16a : The positions of the measurement sections in the flow pattern,
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Figure 5.16b : The radius of the main flow region as a function of the distance from the orifice.
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Fi=

z=-2 mm

z= -6 mm

z=-8 mm

z=-10 mm

Figure 5.18 : Dimensionless profiles of Uz upstream
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