3. STATISTICAL ANALYSIS

3.1. Statistics of the Conductivity data set.

The results of the measurements, after the mean
Conductivity value for each point is calculated, form a data set
of 80 values. The statistics of this data set are calculated, by
running the computer program VARIO1. The program's modified
version VARIO3 is situated in appendix A. The arithmetic mean was
found to be 65.79 m/day, and the sample variance 1-10q(m/day)1-
The coefficient of skewness was found equal to 1.915, which means
that the distribution is skewed to the right. The coefficient of
kurtosis is found &6.73 which is much greater than 3, showing a
leptokurtic distribution.

The very high value of the variance, shows the big
variability of hydraulic conductivity in the studied area. The
lowest value observed was 3-10"" m/day and the highest 488 m/day.
This wvariability should be expected since observation points
expand over an area of about 1 square kilometer.

From the above-mentioned moments of the data set, it can
be concluded that the conductivity in the studied area is not
normally distributed, which is to be further examined, since this
information only gives a general estimate of the parameter.

Considering as parameter under study the logarithm of

the conductivity (under base 10), we find the same moments for
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this parameter. The arithmetic mean is found egqual to 0.491, with
4 sample variance of 3.062 (standard deviation 1.75).The skewness
coefficient is -0.694 and the coefficient of kurtosis 2.34.
Hence, the experimental distribution is found to be sligthly
platukurtic and skewed to the left.

A lognormal distribution might fit the data. To get an
idea about that, we plot the cummulative relative frequencies,
expressed as percentages, against the observations (logK values),
in a special probability graph paper (figure 10). The theoretical
lognormal distribution, with the same mean and variance as the
data, is also shown in the figure. The curve fits the data rather
well. The above-mentioned graph, gives only an idea about the
distribution, since no statistical test is possible to verify the
fit, because the data are spatially correllated. The statistical

test of Kolmogorov-Smirnov will be applied in a later chapter.

3.2. Comparison of results with previous studies.

As it was mentionad before, two different studies had
taken place in the same region. The second one, timewise (Tan
1986), had a plot of 90x%?0 meters, situated near the South-East
corner of the present study. It included observations of 100
points situated on the nodes of a grid with distances of 10 m.

The first one (Nurul 1984), had a plot of 14x14 meters,

which was included in the above-mentionsd plot. The samples were
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taken at the nodes of a grid, every 2 meters.

In figure 11, the cumulative distributions of the three
data sets are shown. One can observe there the gradual increase
of the variance of the data set, with the increase of the area.

The variance is proportional to the slope of the line of each

data set, with respect to the normal distribution axis. The
variance increase is better shown in figure 12, where the
observations of each data set, have been brought around their
mean.

The influence of the study area size on the variance was
investigated by ploetting the three variances versus the
logarithms of the area (figure 13). 1In the figure it can be seen
that a parabolic or exponential relationship appears to exist,
unlike the linear relationship expected (A. G. Journel and Ch. J.
Hui jbregts, 1278).

The statistics of the three studies are compared and
shown in table 8. The mean of the new data set, which corresponds
to an area much larger than the other ones, is much bigger than
the other means. The ratioes of the variances of the new data set

with the "older" ones, are also very big.
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lapie &,  Cotgarison of the statisiics with srevidus studles.

Data set @ Nurul Tan Fresent Fre./Nur, Pre./Tan
Lean i 0,455 0. 0404 43,788 106,9 1628.4
2 -0.2458 -2.0076 0,4H -2.0 -0.2

variance ] 0. 0488 0, 0085 10490, 000 146724,0 1133707.9
2 0.028% 0.4636 3,062 106, 1 4.4

st. deviat., | 0.2622 0.0943 100,455 3631 1069.3
2 0.17100 0.8148 1.750 10.3 2.1

SKENNESS 1 1.0480 3.2030 1.915 1.8 0.6
2 0. 4493 0.038% -0,4897 -1 -{1.8

kurtosis 1 3.0300 12,6000 4,728 .2 0.5
2 2.2310 3.9750 2,139 .0 0.6

Rote ¢+ 1 stands for K values, 2 for lagK values
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4. SPATIAL VARIABILITY

4.1. Introduction

Spatial wvariability analysis is the study of the
differences that might exist between the value of a certain

variable at a point with another at some distance in the same

field area. Geostatistics was introduced in the middle of this
century for mining purposes and geological studies. More
recently, the technique has been applied in water resourses

problems (Delfiner and Delhomme, 1973; Delhomme, 1978). Since
then, many papers have been published about the study of spatial
variability by the Geostatistical method applied to hydrogeology
(Byers and Stephens, 1983; De Marsily, 1984; Gutjahr and Gelhar,

1981; Virdee and Kottegoda, 1984).

4.2. Geostatistics.

Geostatistics can be applied in the study of any

phenomenon which ¢an be characterised as a "regionalised
phenomenon". It is called as such, a phenomenon that spreads out
in space and shows certain structure. A wvariable which

characterises such a phenomenon is termed as & regionalised
variable (ReV). In fact all variables that describe properties of

the subsurface or the atmosphere, may be considered as
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regionalised variables.

From both conceptual and practical stand points, it is
more convenient to deal with regionalised variables by applying
the probabilistic theory of random functions (RF). But it |is
necessary to reconstitute the distribution law of this random
function from the available data. The problem that arises here is
that many regionalised variables have a unique existence, that
is, one realisation. It is possible to compute the structure

based only on this single outcome.

4.3. Hypotheses of stationarity and intrinsic.

Due to the above-mentioned problem, it is necessary to
impose further hypotheses about the randem function, so that it
could be overcome.

The first hypothesis which is usually used in the theory
of random functions, is the hypothesis of stationarity. This
means that the expaectation of the random function 2Z(x), is
constant in space:

E(Z(x))=m (4.1)
x being the location vector.
The covariance depends only on the separation vector h:
cov(Z2(x+h)+2(x))=E(Z(x+h)-m)(2(x)-m)=C(h) (4.2)
The concept of ergodicity implies that the unique

realisation will behave in space with the same probability
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density function. In other werds, by observing the variation in
space of the property, it is possible to determine the
probability density function of the random function for all
realisations, which is termed as statistical inference.

In many natural phenomena, & finite variance does not
exist. This leads to the introduction of the intrinsic
hypothesis: Any increment of (Z(x+h)-2(x)), has a finite variance
which is independent of x:

E(Z(x+h)-2(x))=0 (4.3)
var(Z{x+h)-2(x))=2%(h) {(4.4)

Equation (4.4) defines the variogram, which is a
structural function of the parameter under study, and will be
examined in the following in a higher extend.

Another hypothesis, the one of quasi-stationarity, is
also necessary. It comes out of the fact that the mean,
covariance and variogram are, in practise, functions of the size
of the investigated area, as well as of the area itself. The
structural function, covariance or variogram, is only used for
limited distances |H¢b. The limit b can represent for example,
the diameter of the neighbourhood of estimation, or, in other
cases, the extend of an homogeneous zone. It is allowed for every
study area separately to use the locally found mean, covariance
and variogram. However, they have no effect outside the area for

which they have been calculated.
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4.4. Variograms.

The variogram (h) is defined from the equation:
2X(h)=E(Z(x+h)—Z(x)) (4.5)

It gives the mean squared difference in value for all pairs of
measurements separated by a distance h. The term semivariogram is
usually abreviated as 'variogram", which may cause confusion to
the readers. In the present paper, the term "gyariogram'" will be
used, unless otherwise stated.

The variogram considered, refers to poeint variables.
Such a point variogram can be estimated from point measurements
Z(x), as follows:

() .
Y(h)=(1/(2*%N{(h)) 2(Z(x+h)-2(x)) (4.6)
i

where N(h) is the number of pairs of samples separated by the
vector h.

It can be proved that, 1if the regionalised variable Iis
stationary, the relation between variance and covariance is:

¥ (h)»=C(0)-C(h) (4.7)
where C(0) is the covariance at the point itself, and
C(h) is the covariance between points with distance h.

Variograms exhibit certain characteristics with the

variation of distances. When the variogram has an increasing

function, it starts from the origin, and increases until a
certain value C, , which is the sill and is equal to the sample
variance. The distance at which variograms reach the sill, is
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called the range a. In physical sence, it expresses the fact that

beyond this range, the samples are not correllated.

2N YA

’

el N ]

@) *h (b)

fig. 14, Variogram with sill, range, and nugget

In most casces, the variograms show a discontinuity close
to the origin of the axes, which can be mathematically expressed
by : 1im(y(h))=C, (4.8)

C, is called the nugget effect. It represents the non-
structural variability which can be spatial, or due to
measurement errors.

The computation of a variogram can be carried out in one
particular oriantation, e.g- 1in a North-South grid, or in an
East-West grid. When the variograme obtained from different
orientations are equal, this means that we have isotropic

properties. If that is not the case, we have anisotropism, that

ie, different properties in different directions.
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fig. 15. Variograms in different directions showing anisotr,

4.5. Variogram models.

It is usual practise to fix a mathematical description
(nodel) to the variogram. The usual method for obtaining a
mathenatical description i{s to choose one of the proposed
functional forms, and then calibrate it by using a statistical
mathod, for i{nstance, the least squares method.

The most commonly used models for variograms are:

Linear Y(h)=C;,+ah for h<b (4.9a)

=C,+ab for h)b (4.9b)

34
Spherical Y(h)eCoa(3E- ) for heb (4.10a)
=Corta for hdb (4.10b)

Power \‘(h)cco‘ﬂ-ah" (4.11)
Logarithmic ¥y¢(h)=C, +alog(1+bh) (4.12)
Exponential Yyth)eC, +a(1-exp(-bh)) (4.13)
Gaussian ¥(h)=C, +a(1-exp(-bh?)) (4.14)
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4.6. Computation of a variogram.

Each sample 18 considered as a point In the fjeld.
Equation (4.6) is used. Hence, the contribution of the pair of
points x1 and x2 which are in a distance h apart, is:
¥h)=(1/2)(2(x, }-2(x,) ) (4.15)
As the computations for a set of data can be long and
tedious, it 1is always easier to employ a computer for 1it. The
program that was used here, is adopted from David, 1978 (refer to

the appendices).

Algorithm of the program.
The main step is.to sort all pairs of points available
to a particular class, with respect to direction and distance.
The classification pattern for a given direction, 1is as shown in

figure 16.

fig, 16, Classification pattern for the variogram computation
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In the program, the direction § is refered to as PHI and
4 is refered to as PSI (the angular regularisation). Directional
classification of the line joining two sample points x; and x,,

is done by computing the scalar product

s=(x1x2)/ | x1x2| xd (4.16)
where U is the unit vector of the direction selected.

The distance x;/—x, is classified according to Ah and its
combination.

Corary =(Z(xI=2(x,))" (4.17)
When all pairs have been tested and grouped against a certain
direction class, the smoothed or average variogram along the
direction, is expressed by:

§¢h,®)=(1/2n;) “Zi(dexz) (4.18)
where h=z|x1le/“i- and n;=number of pairs grouped in the same
class (i).

What is finally obtained is a set of one-dimensional
smoothed variogram values along a selected direction. The
calculation of the drift;

D(h; ,8)=(1/n ) (Z(x,)-2(x¢)) (4.19)
enables us to detect the presence of trends.
The procedure of using the program VARIO1 is given in

Appendix A.
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4.7. Results.

The variograms of the K values data set and of the logK
values data set were calculated. Originally, orientation PHI is
taken 45 degrees and the angular regularisation FSI equal to 180
degrees, in order to have all possible pairs.

The maximum distance until which the variograms are
calculated, is 500 m. Intervals of 100 meters were used. The
results of the computations are situated in tables ¢ and 10, and
the respective plotts in figures 17 and 18.

The computations were done by using the FORTRAN program
VARIO1 (M. David, 4977), with some alterations. The output
includes some statistical parameters, and, for each class, the
number of pairs, the drift and variogram values, the average pair
distance, and the "maxvar pair', that is, the pair with the
maximum contribution to the variogram value of the specific
class. The results will be further discussed and explained, after

examining the isotropy of the parameter.

4.7.1. Directional analysis.

In order to check whether the parameter (logK) has the
same statistical properties in different directions, we calculate
the variograms for the directions of O, 45 and 90 degrees, with
angular regularisation of 5 and 20 degrees. The results can be
seen in tables 11 and 12, and their graphs in figures 19 and 20.

In the first graph (5°), the variograms are very irregular for
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Variogram values (m2/day2)

Variogram values

VARI!IOGRAM

50 100 150 200 250 300 350 400

Distance [in meters]

fig. 18. Variogram of the logK data set
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fig. 17. Variogram of the K data set
VARIOGRAM
logK values — interval 100 meters
L} 1 ! ] ] 1 i 1 1 6
i 5
i 4
3
2
1
0
4 -1
1 1 1 1 1 1 1 i 1 ""2




table 11. Directional analysis (P5I=5 )

VARIOCRAHN

STUDY OF SPAT]AL VARIABILITY OF FIELD PARAMETER.
HYDRAUL IC CONDUCTIVITY 1IN M/DAY
4 WITH A FIELD OF 9. DECRCES IN EACH DIKECTION )
LOCK
STEP IN METER - . 1000E+03 8
UFPER LIMIT FOR 2 = . 26B9E+01
CGENERAL MEAN OF I = . 4913E+00 o
CENERAL VARIANCE OF I = . 3042E+01
QENERAL SKEWNESS OF 7 = - &F&SE40Q0
CENERAL HURTOSIS OF I = . 2339E+01
DISTANCE IN METER NO. OF PAIRS DRIFT VAR I DGRAM AVERAGE DISTANCE
0 — 100 7 -
100 —-- 200 9 -. Aﬁ% 33‘1’%53} 133'3
200 —-- 300 17 810E+00 A3 E+0] 267. 1
800 -—— 400 17 -. 44TE+00 TE 3%. 0
400 —— 300 20 ~. TIHE+O0 2432€+0] 440, &
300 —- 600 16 ~-. 17PE+D0 4394E+01 842. 7
600 —— 700 18 4TYE+0O 2303E+01 &84, 2
700 --— 800 12 -. 807E-01 1928E+01 749. 8
ggg -—— 900 3] - 1003E+01 @37. 0
99. 99 ~=1000 3 -. B43E+00 1935E+01 33,3
VARIOCRAMHN
ST ST Y TR 1D Penarren:
A
{ WITH A FIELD DF 3. DEGREES IN EACH DIRECTION )
- LOGH
i 16TEP IN METER = JI00DEH03 e
UPPER LIMIT FOR 2™ =  .2689E401 e
QENERAL MEAN DF I = . 4913E4+00 43.
OENERAL VARIANCE OF I m LFOADEHOL e e
CEMNERAL BHKEWNESS OF 2 = - 49463E+00 .
CENERAL KURTUS1S OF 1 =, 2339E+01
: DISTANCE IN METER NO. OF PAIRS DRIFY VAR 10CRAM AVERAGE DIGTANCE
—— ’ . 130E+01 83136400 &1.2
103 -— 5% 15 - 73X 3641E+01 142, 1
200 —- 300 9 . ZDLE+00 _23%6E 284, 2
300 —— 400 14 . 106E+00 326 2E+01 asnl. 2
400 —— 300 v . 420E+00 Z9BE 454, B
500 ——— &00 12 . 6I4E A401E+01 859, 1
: &00 —— 700 -] —. BO7E+00 2573E+01 %o.o
700 —— 800 7 - 8E3E . 20B3E4+01 5.0
800 —— $00 9 L &F1IE+00 2231E+01 838, &
900 ——-1000 3 -. 207E S49E 931.1
1000 ——1100 1 . 307E+00 4498E—-01 1020. 8
99. 99 :
VARIOORAMN
STUDY OF BPATIAL VARIABILITY OF FIELD PARAMETER:
IC CONDUCTIVITY IN M/DAY
{ #WiTH A FIELD OF 3. DEGREES IN EACH DIRECTION ?
LOGK
STEP IN METER - CLOO0E+03 e e
UPPER LIMIT FOR Z - CREBFEHOL o e
CENERAL MEAN OF I = ATIIE+00 %0
CENERAL VARIANCE OF Z = L BOAZE4O1 e
CENERAL BKEWNESS OF 7 = - LFLBE+00
GENERAL KURTDSIS OF 2 = . 2339E+01
DISTANCE 1IN METER NDO OF PAIRS DRIFT VAR IDGRAM AVERAGE DISTANCE
-——- 100 1 -. 319E+01 . SOBAE+O1 v4. 6
100 —-—v e 377E+00 I 9612E4+00 175. 8
200 ---—— 300 13 87Ol . 24J6E+01 233 O
300 ---- 400 e 330E+00 L S192E+01 362 3
400 --—- %00 10 —. 1B3E+00 1133€+01 431. 3
300 —---- 600 11 7BAE+00 LO7DPE+01 838 3
&00 -—— 260 10 - 131E+D]} . S834E+0D} HR2. 7
o9 99 700 --—- BOO 2 268TE+00 I1%1BE+01 728.0
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table iz. Directional analysis (FLl=2U 2
— VARIOGRARM
STUDY OF SPATIAL VARIABILITY OF FIELD PARAMETER: *
HYDRAULIC CONDUCTIVITY IN M/DAY
¢ "WITH & FIELD OF 20 DEGREES IN EACH DIRECTION )
LOGK
6TEP IN METER = CI00OE40T e y
UPPER LIMIT FOR I = C2EETEHOL e
GENERAL MEAN OF Z = . 4913£+00 0.
CENERAL VARIANCE OF I = B0EE+CL e
GENERAL GREWNESS OF Z =~ AFLIE+00
GENERAL KURTDSIE OF I = . 2339E+01
DISTANCE IN METER NO. OF PAIRS DRIFT VAR IOGRAM AVERAGE DISTANCE
g --— 100 20 -. B&LE-O1 . 3%84E+01 77.1
100 -——- 200 45 . SOEE . 4371E+01 1&0. &
200 ---- 3J00 36 443E+00 . 3761E+01 296 6
300 -——- 400 &9 ~. 1D4E+00 . 4080E+01 3546
400 ~—-- 300 &4 —. 2LEE+O0 3410£+01 451.0
300 —-— &00 39 —. 494E+00 3708E+01 845. @
&00 —— 700 89 . B&BE—01 . 188&E+D1 &%3. 2
760 —~—— 800 &0 196E+00 1894E+01 748 %
800 —~— %00 a2 ~. A3YE+00 2301E+01 e30. 5
900 —-=---1000 13 . 301E+00 me.am 937.0
1000 —~—-1100 1 L 184E+01 1691E+401 1009%. 3
, F9.99
1
VARIOGRAM
ETUDY OF BPATIAL VARIABILITY OF FIELD PARAMETER:
HYDRAULIC CONDUCTIVITY N M/DAY
¢ WITH & FIELD DF 20. DEOREES 1IN EACH DIRECTION )
. LOGK
BTEP IN METER - CLOOOE+03 o e
VPPER LIMIT FOR Z = LARBTEAOL e
©ENERAL MEAN OF I = | 4FISE+H00 43,
GENERAL VARIANCE OF 2 = _B0GZEHO0L o e e
OENERAL SKEWNEES OF I =~ 4963E+00
OFENERAL KURTOSIS OF 2. =  Z33FE+0L
DISTANCE IN METER NO. OF PAIRS DRIFT VAR I OGRAM AVERAGE DISTANCE
0 ——- 100 e 924£+00 . 1970€+01 69, 2
1060 —~— 200 a1 -. 1B1E+00 26466E+01 139. ¢
200 —---- 300 43 - 1992E+01 233. 9
; 300 —~- 400 59 I 853E+00 . 3213€+01 3921
400 ——- 300 35 . Y3301 . 41A4E+01 44%. 0
800 —— &00 59 I 225E S064E+01 =50 &
&00 ——=-- TOO a9 ~. 1TBE+O0 . 3177€+01 492 b
700 —-— 800 as -. SB7E4+00 5118£+01 743.2
800 —— 900 30 141E+00 2540E+01 841.4
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LOGK
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every direction. This 1is due to the fact that the number of
observations is extremely low. In the second graph, which
represents more observations, there are less irregularities, and
there does not seem to appear any influence of the direction.
Thus we may say that the parameter (logK) shows Iisotropic
properties. This was found to be true in the previous studies

too.

4.7.2. Search for observational errors.

Through the ‘"maxvar" option of the program VARIO1, a
search for observational errors was tried. The idea was that, if
a point appeared at the same time at the "maxvar pair" of many
classes, it could carry an observational error in it.

In the variogram of logK values (table 10), we observe
that the points 6,55,73 appear three times each in the maxvar
pairs. The above-mentioned points, happen to have very low or
very high values of the parameter, which could alone explain the
fact that they appeared at the maxvar pairs. Nevertheless, e
construct the variogram of the remaining observations (table 13).
Its plott 1is reffered to as “second variogram" in figure 21,
where it can be seen that the variogram, having not changed in
shape, just shifted towards the distance axis, showing lower sill
or sample variance.

We then calculate a “"third" varijiogram (table 14), after

having excluded the point number 25, which appears 4 times in the
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Variogram values

Variogram values

VARIOGRAM
logK volues — interval 100 meters

¥ T T T 1 1 1 ]

dashed line: second variogram .

S0 100 150 200 250 300 350 400

Distance [in meters]
fig. 21. Variogram without observations 6,55,73

VARIOGRAM
logK values — interval 100 meters

dashed line: third variogram i

50 100 150 200 250 300 350 400

Distance [in meters]

fig. 22. Variogram without observatians 6,26,35,73
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maxvar pairs of the second one. The resulting plott (figure 22),
is very similar to the second one, showing that no observational

error was detected.

4.7.3. Conclusion.

Considering the two previous conclusions, that is,
isotropism and no observational error detection, we interprete
the variograms in figures 17 and 18. Both of them, show a pure
nugget effect, which can be explained by the fact that,

variations in the data exist at a scale smaller than the sampling

distances.

4.7.4. Comparison of the variogram with previous studies.

The variogram of the present study (logK values), was
plotted together with the variograms of the two previous studies
(figure 23). There appear to be a lot of differences in the
structure of the three variograms. The effect of the plot size,

is responsible for these differences.

4.7.5. Total variogram.

The coordinates of the points of observation of the two
previous studies, were transformed into the system of the present
one. Two points of the study of Tan were dropped, since they
corresponded to O conductivity values. The rest, a total of 242
points, are shown in figure 24.

The total variogram is then calculated, for the 242

54




points (table 15). The results are plotted in fig. 25. Apart from
the points, the line of the proposed model for the variogram is
plotted there. It is a model with a sill of G =3.79 and a range
of a=142.9m. Since there are no points between, the model is
increasing linearly until the point (142.9,3.7%). This model will
be used in the application of the kriging estimation technique in

chapter 6.

4.7.6. One-point variocgrams of each study.

Considering the points of each study separately, as
belonging to the same class, we calculate one variogram value for
each study. The results are situated in table 16, and plotted in
fig. 26. No model variogram can be fitted to the three points,
since the variogram value of the first study seemes relatively

very small with respect to the average distance.
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scale 1:5000

fig. 24. Map of all observations
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table 16. One point variograms for eaqh study
VAR IO K AM
SNV Of SFAVTIAL VAPIANILITY in° FIELD PARAMETER
(HYDEALL 1L CORDUCTIVITY K-R/7bay) .
¢ H11H A FIFLD OF 10 DEGRLCES IN EACH DIRECTION }
s
LOCr
STEF N HETESR < L2402
YFPER LIMWIT FOR 2 = L1139 s 00
LGINERAL HEAN VW 2 x ~, 24%91FE+00 43
CERMCHAL VAR )ANTL OF 2 n L HlsE-01
KRENLHAL SPEWI S DF 7 . .A4%3L +00
_CF_NLRN KUFTOS IS OF ¢ = 23C7E +0)
DIS1ANCE IN METER NO OF PAIRS DRIFY VAR OGRAM AVERAGE DISTANCE
. 0 ==—= 20 1953 . 29%9E-01 ., @I22E-0) 0.4
95. 9%
VARIODOGRAN
BTUDY OF BPATIAL VARIABILITY OF FIELD PARAMETER
(HYDRAULIC CONDUCTIVITY M—M/DAY)
¢ WITH A FIELD OF 180. DECREEE IN EAGH DIRECTION )

L . . LOOK
farer IN reTER = . 20006403
Juprer LIMIT FOR 2 = - 34136400 erananan
JOENERAL MEAN OF Z = = 2007E+01 I as

AL VARIANCE OF 2 = | &&ISEHO0
;}omn_ BKEWNESS OF I = _9@87v3c-01 .

Al KURTOSIE OF I = 297E+01

DISTANCE IN METER NO. OF PAIRE DRIFT VAR IOORAM AVERAGE DISTANCE
Q —— 200 - 4733 -. 128E+00 . DV2LES00 %17
. v )
VARIODORAMN
BYUDY OF GPATIAL VARIABILITY OF FIELD PARAMEYER:
HYDRAL ONDUC TY IN M/DA
“(: o ngn.n'or 100. DEQREES IN EACK DIRECTION )

B Loor
6YTEF IN METER - . FO00E+04 et aiaeae
UPPER LIMIT FOR I - . 248YE+01 ECRERTEEE
CENERAL MEAN OF I - . &ATIIEHO0 : as.
JOENERAL VARTANCE DF 2 =, J0&TE+O1
CENERAL SKEWNESS OF 7 - = &96IEHD0
OENERAL WURTOGIS OF 2 - | Z33ITE+01

DIETANCE IN FETER  NJ. OF PAIRS DRIFT VAR IOGRAN AVERAGE DISTANCE

Q ——2000

061 =, 200E+00 . ISE+O1 473. 8
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4.8. Kolmogorov-Smirnov goodness of fit test.

Looking for the distribution of the data sets, we will
test the hypothesis that it is normal. In order to test this
hypothesis, we will use the Kolmogorov-Smirnov goocdness of fic
test, which, it should be stressed, cannot be applied in cases
where the data is correllated.

The theoretical probabilities of an observation being
smaller or equal to each specific one (under the hypothesis of
normal distribution), are first calculated. This is done by first
normalising the values with the formula:

Z=(K-m)/s (4.20)
where m is the mean, and s the standard deviation, and second,
reading the probability from the standard normal curve table:
F(K)=P(2<z) (4.21)

The corresponding experimental probabilities are then
also calculated. The observed values have to be in ascending
order. Then, as the experimental probability of a measurement
being smaller or equal to the Ith observation with value K, we
consider:

Fe(K)=(I-0.5)/n (4.22)
where n is the total number of observations.

For each specific observation K, the di fference between
the experimental probability is calculated:

di=Fe(Ki)-F(Ki) (4.23)

The greatest value of the dis is then compéred with standard

&2




functions, depending upon the significance level considered:
for significance level 5%, dmax allowed is (1.3&//M)

for significance level 10%, dmax allowed is (1.22/yn)

4.9. Application of the Kolmogorov-Smirnov test.

In the present study, the distances between the
observation points are of the order of magnitude of 50 to 120
meters. In order to apply the goodness of fit test for the
normality of the observations, we have first to ensure the non-
correllatedness among them. The model of the total variogram, has
a range of 142m. So, to ensure the non-correlatedness we would
have to exclude all points with distances smaller than 140m. But
in that case, we would have been left with very few observations.
For this reason, we select 35 observations between which there is
no distance smaller than 20 meters, since hydraulic
conductivities of points with smaller distances, can be
considered as being correllated.

A map of these points is situated in the following page.
The program VARIO3 is then used to make the test, and the results
can be seen in table 18 for the logK values, and in table 19 for
the K values. Figure 28 shows the theoretical and experimental
probabilities versus the logK values, and figure 29 versus the K
values. The results show that both the normality of logK and K
values are accepted at a significance level of 5%, and rejected

at a level of 10%.
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fig. 27. Observations considered for the K-5 test
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table 17. Kolmogorov-Smirnov test for logK values

NUMBER OF SAMPLES= 35

RANK Z VAL NOR.VAL EXPT. PROB
1 =-3.436 =2. 622 . 0142837
2 =3.071 -2. 387 . 04283571
3 -1.477 -1, 412 . Q7142864
4 -1.328 -1.321 . 1000000
g -1.304 -1.307 . 1289714
6 -1.225 -1.258 . 1571429
7 -. %1g -1.071 . 1857143
8 -. 481 -. 92& . 2142857
b d -. 428 -. 771 . 2428571

10 -. 229 -. 650 . 2714284
11 . 121 -. 436 . 3000000
12 . 278 -. 340 . 3283714
13 . 899 . 037 . 3B71429
14 1.150 . 193 . 3837143
13 1. 202 . 229 . 4142857
16 1. 305 . 288 . 4428571
17 1.385 . 336 . 4714284
18 1. 409 . 391 . 3000000
19 1. . 429 . 3283714

20 1. 704 . 931 . 9971429

21 1.712 . 937 . 9837143

22 1. 743 . 954 . 6142857

23 1.916 . &61 . 6428571

24 1.972 . 695 . 6714286

25 1.974 . 697 . 7000000

26 2. 016 . 722 . 7285714

27 2. 060 . 749 7371429

28 2. 157 . 809 . 7837143

29 2. 211 . 842 . 8142837

30 2. 239 . 8399 . 8428571

a1 2. 298 874 . B714284

32 2. 328 913 . 9000000

a3 2. 450 . 988 . 72835714

34 2. 9463 1. 007 . 2371429

33 2, 689 1. 133 . 9837143
DMAX = . 219

-
;

n
z
mm
3

&5

THEQ.
. 00435696
. 0083033

. 834177 AND STD.

PROP

. 8144388
. 8193236
. 8383119
. 8344832
. B7148%97

TY OF THE OBSERVATIONS IS ACCEPTED
E LEVEL 9%
. 219 AND THE LIMIT IS

OF THE OBSERVATIONS IS REJECTED
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table 18. Kolmogorov-Smirnov test for K values

NUMBER OF SAMPLES= 35

RANK I VAL NOR VAL EXPT. PROB THEO. PROB D1 D2
1 . 000 703 . 0142857 2407369 . 227 000
2 001 -. 703 . 0428571 . 2409382 . 198 227
3 033 -, 703 0714286 . 2410267 . 170 198
4 047 -. 703 1000000 . 2410638 . 1431 170
S 050 -. 703 1283714 . 2410709 . 112 141
& 060 -. 703 1971429 . 2410981 . 084 113
7 121 -. 702 1857143 . 2412644 . 0546 0B84
8 209 -, 701 2142857 . 2413033 . 027 036
4 . 373 -, 700 2428371 . 2419325 . 001 . O=28

10 . 9590 -. &98 2714286 . 2423421 . 029 000
11 1.323 -, &92 3000000 . 2440479 . 099 27
12 1. 897 -. 687 3285714 . 2461260 . 082 . 094
13 7. 859 -. &35 3571429 . 2628162 . 094 066
14 14,122 -. 380 3857143 . 2809511 . 109 . 076
15 13. 919 -. 864 4142897 . 28624641 . 128 . 099
16 20. 204 -. 527 4428571 . 29912680 - 144 . 119
17 24.248 -, 492 4714284 . 3114929 . 160 . 131
18 205, 642 —. 479 . 3138058 . 184 . 134
19 34. 322 -. 804 92805714 . 3432227 . 189 . 197
20 50. 336 -. 2a2 9971429 . 37646032 . 161 . 132
21 951. 552 -. 253 Sg571423 . 4000284 . 186 . 197
22 535. 353 -, 220 6142837 . 4128992 . 201 . 3173

23 82. 351 . 01& 6428571 . 3062157 . 137 . 108

24 93. 638 . 114 6714284 . 94234947 . 126 . 097

25 94,197 .119 7000000 S473564 . 153 . 124

246 103. 715 . 202 7285714 5800710 . 149 . 120

27 114,754 . 298 7571429 6173131 . 140 . 111

28 143, 577 . 990 7857143 7088369 . 077 . 048

29 162. 673 .77 8142857 . 7632339 . 031 . 022

30 173. 832 -812 8428571 . TT14703 . 031 . 023

31 198. 4346 1.029 B714284 . 8482433 . 023 . 009

32 212, 640 1.153 2000000 . 8735299 . 024 . 004

33 281. 799 1. 797 9283714 609107 . 032 . 061

34 363, 727 2. 489 . 9971429 . 9935000 . 036 0&9

3% 488. 294 3. 339 . 9837143 . 9998140 . 014 . 043
DMAX = . 227

THE NORMALITY OF THE OBSERVATIONS IS ACCEPTED
LEVEL S

FOR SIGNIFICANCE *
SINCE DMAX= AND THE LIMIT IS . 230

THE NORMALITY OF THE DBSE?VATIDNS IS REJECTED

FOR SICNIFICANCE LEVEL 274
SINCE DMAX= . 227 AND THE LIMIT IS . 206

THE MEAN IS BO. 266149 AND STD. IS 114 333251
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