§. PROPORTIONAL EFFECT.

5.1. Introduction.

It happens often in practise that the structural
functions of different data sets of data collaected in the same
neighbourhood, exhibit some differences. These are frequently due
to the unstationary behaviour of the measured parameter. When
having sufficient data, one can apply the concept of quasir
stationarity, and eliminate the differences by applying scaling
of the data. In case of observing similarities of the data sets
after having applied scaling of the data, a proportional effect

is said to be observed.

5.2. Quasi stationarity.

The. concept of quasi stationarity is necessary before
any further discussion of the concept of the proporticnal effect.
Suppose a structural function (covariance or variogram), is only
used for a limited distance (i|hKb). The limit b, can represent
the extent of a homogeneous zone with respect to the parameter
under study, or the region which can be considered as
neighbourhood. The concept of stationarity can be applied only
within this limit. The hypothasis of quasi stationarity, assumes
that;

1. The expectation of the parameter is quasi constant
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over the limited neighbourhood. For a pair of points x and X

belonging to the same neighbourhood V{(xy centerad on the point Xx,
it is
mi{x) = m{x) = m(x) (5.1)
2. Inside such a neighbourhood V(x), the structural

functions Y or C depend only on the vector of the separating

distance h, and not on the two positions x and x'. Evidently, they
also depend on the particular neighbourhood V(x), that is, on the

peint x,.

yix,x) = yx-x,x0)  ¥x,x'e V(X) (5.2)

§.3. Proportional effect.

The proportional effect is just an experimental
observation. It can be interpreted by the fact that the random
function 1is only locally and quasi stationary. It supposes that
the experimental structural functions such as the experimental
variograms Y{(h,x, J, X(h,x: ),... on data sets of different
neighbourhoods, <can be made to coincide by dividing each one of
them by a function of the corresponding experimental mean of the
available data set in each neighbourhood:

YCh,x)/£(m*(x)) = g(h,x')/f(mx<x;>) (6.3)
where m*(x,) is the experimental mean.
This amounts to the assumption of the existence of a

stationary model of the structural function (in the case of the
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variogram ¥ .,(h) , independent of the neighbourhood location X,
and such that;

yeh,xo) = F(m*(xy)) Ko(h)
In such case, the variograms j¥(h,x,) and y¢h,xg), are said to
differ from one another by a proportional effect.

The function f of the proportional effect, can be
determined separately in each case, by studying the proportional
relationship between various experimental variograms, coming from
different neighbourhoods. It is evident that sufficient amounts

of data are required for each neighbourhood.

5.3.1. Direct and inverse proportionality.

In cases where the experimental structural function
(variogram) increases with the corresponding experimental mean,
the effect is said to be direct. It normally occurs when the
random variable has a lognhormal type histogram, i.e. the mode is
less than the expectation.

When, on the other hand, the experimental variogram
decreases with the increase of the experimental mean, the
proportional effect is said to be inverse. This occurs when the
random variable has an inverse lognormal type histogram, with the

mode greater than the expectation.
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5.3.2. The proportional relationship.

The proportional function f, can be a relationship of

any form with the experimental mean:

f{mx{x)})) = m¥{(x) (5.4)
or - (m¥¢x))  (5.5)
or = (A-m*(x))’ (5.6)

Both equations 5.5 and 5.6, represent an effect with a relation
which {is a function of (mx(x)>)*. 1In the first case though, we
have direct, and in the second, inverse proportionality. It can
also be a non-linear relation.

It has been suggested that when the logarithm of thae
parameter exhibits intrinsic features, the relation c¢an be
expressed in terms of its experimental means, without taking the

mean from the logarithmic transformation (David, 1977).

5.4. Study of the preoportional effect.

The results obtained from the present study, have been

compared to the two previous ones (table 8 chapter 3). No

resemblance was found with none of them, neither in the K, nor in
the logK data sets. It can be concluded that the data come from
different arseas.

In the second study (Tan, 1986), a proportional effect

investigation gave positive results. An inverse proportional

relation was found in the variograms of the log of K, having a
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CARN

function f equal simply to the mean of the K values.

The same proportional relation was investigated in the
present study. In figure the variogram of the logK values of
the present study was plotted, together with the variograms of
the two previous studies, multiplied by the ratioces of the means
of the K values (106.9 for the first study and 1628.4 for the
second one). It is shown that the points of the first study lie
roughly on a straight line with the ones of the present one. On
the other hand, the points of the second study, lie much higher.
So, there is a direct proportional relationship between the
present séudy and the study of the 14x14m plot, while with the
other one,; no éuch effect is detected. Since there is an inverse
proportional relationship between the two previous studies, this

should be expected.

-------------------------------------------------------------

Data set : Nurul Tan Present Pre. /Rur, Pre./Tan

#gan { 0.4155 0.0404 b5. 786 106.9 1628.4

2 -0, 451 -2,0070 0. 44§ 2,0 0,2

variance 1 0,0688 0. 0089 10050,000 146721,90 1133707.9

0.0289 0.6634 3.062 §06.1 44

sean fvar, | 5.3088 0.1834 0.42% 0,078 2.3

nugget 2 0.0264 0.4157 0,000 0. 0.0

slape 2 0.0002 0. 0030 0.027 14,5 7.0
Note : | stands for K values, 2 for logK values

73




A}iTeuatiJodoad ButAtdde Jajje y 40 Boy 40 weubotaep ‘g ‘013

2ouD}s!IQ
00S O0OG¥ Q0¥ 0GE¢ O00¢ 0S¢ 00C¢ 0slL 00L 0S 0 0S—
C T T ) T T T T T ) T
|
;
L . _ -
|
I O IS
_
° ® ® ° ¢ ‘—
_ _ _
|
:
n _ ]
!
_ _ |
ll-ll-lnlunm
- n ‘
_ ]
|
1 | ] | ] 1 1 I ] |

swpIbolIDA

74



00"

00" 1L

00 ¢

SUPSW SNSJBA SUDTIRTASp pusepuels *Iy 'brs

SUDSW

_ 0 00 |- 00 Z—

SUOI}DIADP pPJDPUD]S

75



o. KRIGING

6.1. Introduction

Kriging is a method used for the estimation of the value
of a field parameter and its variance. It is applied when the
parameter can be considered as a regionalised variable. It was
introduced by Matheron (1960) for the evaluation of mineral
resourses. The estimation can be local or global. Local
estimation, refers to point estimation, and the global estimation

extends to averages over a certain area.
6.2. Kriging

As Kriging, is defined an estimation technique which
provides a best linear unbiased estimator of a regionalised
variable <(usually reffered to as B.L.U.E.). It is assumed that
the intrinsic hypothesis still holds.

Considering a point x having the valua of an unknown
parameter Z(x), and a series of n observations Z(x),...,Z{(x) at

X

p - +.%, Trespectively, a set of weight coefficients 3,...,3, is

chosen, which will make the weighted average 2* the best
estimator.

Z,=Ja, 2(x) (6.1)
For an optimal, we impose two conditions;

1. It must be unbiased.
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E(Z,)=E(2,)=m (6.2a)
E(Za; 2; -2, =0 (6.2b)
which implies that
gai=1 (6.2¢)
2. The minimisation of the estimation variance.
The kriging estimation variance, is given by:
6'=E((Zi-2, )
=E((a, Z ~3a; 3
=§ai§j5((z;—zo)(zd—z,)) (6.3)
The variogram, can be by definition written as:
%:(1/2)E((Zi-%j))
=(1/2)E((Zi-zof)+(1/2)E((§j-zof)-E((Zt-Z,)(;j—z,))
=&°+M¢—E((Zi-zo)(23-zo))
or E((Z; -2, 242524 ))=Yss*Jjo ~¥ij (6.4)
By substituting the equation 6.4 in 6.3, we cbtain:
=-g§ai 85 Yij +1.£al-xio (6.5)
By applying the principle of the Lagrange multiplier, we can
minimise the sum in equation 6.5, under the condition of equation
6.2c. We then have to minimise:
F=Q+2pc (6.6)
where Q@ is the function in equation 6.5
p is the Lagrange multiplier
c is zero when there is a constant and represents
the condition.

By substituting from equation 6.5 and taking the partial
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derivatives with respect to a and , a system of n+1 linear
equations with n+1 unknowns is obtained. This system is usually

reffered to as the "kriging system'" (equations 6.7 and 6.8);:

3 _
L =-%a. Y+ Yi-h = (6.7
da; E%XU Yiou =0
F 55, =1 (6.8)
T

The first of the two equations, can be expressed in matrix form

as follows:

(ZYA)=(D) (6.9)
rxu Xn L. Yg.\ [ r a; ] [ XID-
LTOER T Bzu 1 it Y10
h nﬂ .o 1 Un Ywo
(1 4 - 1 o] [ ] |4

(£) 1is a symmetric matrix depending only on the observations,

(D) depends on both unknown and observation points.

Solving this system will result to the n coefficients a;
and the Lagrange multiplier. With the known values of a; , we
can compute the kriging estimator. The kriging variance, can be

expressed in terms of the variogram:

6=E((Z5-2, N =p+ia; Y, (6.10)
| 3
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6.3. Properties of Kriging

The kriging system considers the distance between the
point under estimation and the data points, with "io" terms, the
distances between data peoints with "ij" terms, and the structures
of the variables through the variogram.

When kriging at x, which does not coinside with any
observation point x;, the kriging estimators in X, #x; give a
smooth curve (fig. 32a). But when kriging is carried out at a

point that tends towards one of the observation points x; the

value of the estimator will change and give a sudden jump when it
coinsides with the observation point (fig. 32b). This is due to
the presence of the nugget effedt. The value obtained here, will
be the same with the observed value, with a variance equal to

zero. This is obvious, since kriging is done at a point which is

the exact interpolator.
z

(s)

(b)
Fig. 32. Kriging pesition
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6.4. Kriging with nugget filtering.

Kriging is carried out with the inclusion of some errors
in the regionalised variable, which can be experimental, random,
or microregionalisation errors. These are expressed in the nugget
effect of the variogram. The position of the kriging cannot be on
the observation point itself, since it will give a discontinuity.
Kriging at a point beside an observational one, will give a best
estimator.

It is possible to filter out the errors. They may
consist of all possible kinds of error components, but here it is
considered that the main ones are the measurement errors.

Suppose that the observations possess a certain type of
error 5, not correlated with Z(x), and having a mean E(§) equal
to zero and variance Gf. Then the kriging estimator <¢an be
expressed as;

2l =5a;, (2,+5) (6.11)
The expectation of the estimator:
Fa, E(2;)=E(Z,) (6.12)
The kriging system is represented as:
3iaf Y K= i (6.13)
(the accent denotes the inclusion of the error component)

It has been shown that the relations between terms with
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and without the inclusion of errors are as follows:

the weighted coefficients a, =a;

; (6.14)

the Lagrange multiplier |ﬂ=p+6§ (6.15)
the variance ¢'= &' +65' =a 6; +65=(1+a,def (6.16)

When the kriging position coinsides with one of the
observation points and it is done without filtering of the error,
the variance is zero. MWhen kriging with filtering of the errcr,
all coefficients a; will tend towards af when the kriging
position approaches the observation point, without experiensing
any jump or discontinuity.

In general, kriging with a variogram where nugget effect
coccurs, there will be a sudden jump of sgz(without filtering off
the error) at the level of the observation peint. This kriging
variance 1is equal to (1+a;) times the nugget effect, because it
represents the total nugget effect of the variogram.

The experimental variogram (with error), is expressed as
follows:

%:gws;- (6.17)
From this equation, to have the error filtered off, we have to
substract the nugget effect which is equal to the variance error.
This will then give the actual variogram.

Kriging with filtering can be performed with much more
confidence. The variance of the residual of the estimator is much

smaller when compsred with classical kriging.
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6.5. Global estimation.

The values of a field parameter obtained from
measurements on the points of a plot, wusually vary widely. In
case of considering the arithmetic average of all the values,
would give over- or underestimation, since the data are
dependent. Against this, one can simply consider the whole plot
as a block and calculate the mean value with the kriging method.
The kriging variance obtained, gives the estimation variance of
the mean.

Another way is to use peoint kriging and the point is set
at infinity. This will give an estimated value equal to the mean,
with the estimation variance equal to the estimation variance of

the mean, plus the total variance.

4&.6. Results.

To apply the technique of kriging, we used here the
model variogram which was adopted to the total variogram in
Chapter 4. It is a linear model, with no nugget, a slope of .0245
and a range of t42.%¢m.

The centre of the 14x14m plot was first kriged (table
21). A value of 0.126m/day was obtained. The observed mean of the
64 points of that study, was 0.616m/day, which is much higher
than the kriged value. The kriged standard deviation is 0.%1.

Four points of the ?20x?0m plot were also Kkriged (table

22). The results are compared with the respective observed values




in table 20. Each kriged point gave a value much higher than the
observation. Considering logarithmic values, the confidence
interval of 95% would be defined by the inequality:

e-2s5 ¢ logK < e+Zs (6.18)

where; e is the estimate (logﬁ)

s is the estimated standard deviation, that is, the square
root of the estimated variance
By removing the logarithm, we obtain;:
K107 < K< K-10'" (6.19)
As it can be seen in table 20, all the observations fall

inside the confidence intervals of the kriged values.

Table 20, Comparison of kriged values with gbservations

90x90s plot point  obs. val.  kriged val.  krig. stan, dev.  lower lisit upper linit
34 0.002 0.122 1.109 0.0007 20,2
3 0.008 0.150 1,396 0,0002 92.9
64 0.001 0,140 1179 0. 0004 .3
67 0.036 0.185 .52 0.0002 203.8
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table 22.

[ Y l,h'lH 10
1

l-lJlHl‘_\.l\,I'\ 13 ¥Y-DIRECTION IS5

o
THL

THE -GORD U5 THE 18T GRID PT. 1S

vaf GNTERVAL NCT  LACH GRID PT 1S

el MOS  OF MEASURED VALUES = BO

AAOCRAM 1S A LINEAR TYPE WITH
i 00000000
s 0“&52200
= 142’ 70000000

LMD CUMPUTATION IS5 WITHOUT NUGGET
FILTERTNG

X -COORD ¥--CODRD.

KRIGED
VALUES(LOG)

Kriging of points
BE WRIGED ALONG

. &706E+DD.

. O o

KRIGED

VALUVES
. 1218431E+00

3990E+03

MR ICED
VARIANCE

. 1230172E+01

&70. &G 397. 00 - 141 720E+00

THE INTERVAL UET. EACH GRID PT. IS . 0. .0
THE NOS. OF MEASURED VALUES = B0

THE VARIDGRAH 15 A LINEAR TYPE WITH
. 00000000

COEF (1)
32200

CDEF(2)= . 024
COCF(3)e 142. 90000000

THE COMPUTATION 15 WITHOUT NUGGET
FILTERING.

X-COORD
700 &0

Y¥-COORD
37%9. 90

KRIGED
VALUESLLOG)
-, B2291%5E+00

KR IQED
VALUES
. 1503435E+Q0

OF PDINIS 1L B U Auuwne

1HE NOS. 1 E_NK
K “DIRECTON IS 1 Y-DI RECTION IB 1

THE

THE CODRD. OF THE 18T GRID PT. 18 . G&RTE+OD,

THE INTERVAL BEY., EACH GRID PT. IS O .0

1HE NOS OF MEASURED VALUEE = B8O

THC VARIOGRAM 18 A LINEAR TYPE WITH
EF 000 [a]s]

y=
COEFL2)= 2200
= 132 ?OOOODOO

Y—-COORD. KRIGED KRIGED
VALUES(LOG) VALUES
428. 70 . 139831 1E+QD

=-. B942340E+00

X-COORD
eb 70

NOS. OF FDINTS TO BE KRIGED ALONG
X—DIRECTON IS 1 Y-DIRECTION IS 1|

THE
THE

. &997E+03,

.G -0

THE CDORD. OF THE 1ST QRID PT. 1S

INTERVAL BRET. EACH GRID PT. 18
NOS. OF MEASURED VALUES = BO
VARIOGRAM 1S A LINEAR TYPE WITH
. 90000000
02652300
142, 0000000

1HE COMPUTATION 1S WITHOUT HUGGET
FILTERING

KRI1GED
VALUES
. 16%2345E+00

¥-—COORD.
429 90

KRIGED
VALUES(LOG)
-, 7322733E+00

xX-COORD
699 70
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VAR 1ANC
. 174763BE+01

KRICED

. 4ZBYE+0D

. A29FE+0T

KRIGED
VAR ANCE

. 2314327E+01

of the $0x%0m plot

WRIGED

ETD. DEV.
. 1109131E4+01

KR1CGED
STD, DEV.
. 139327BE+QL

WRIGED
6TD. DEV.
. 1175324E+01

KRIGED
STD. DEV
. 1521357E+01




7. CONCLUSION

In the first part of the study, the data collection, and
especially in the comparison between the results of the two
different methods used (constant and variable head), there appear
to be measurement errors, which are hard to estimate.

The observations vary from 0.0003m/day to 488m/day.
Their mean is 65.8m/day, and their variance 10“(m/day)t.

A comparison of the map of contour lines of conductivity
with an existing geological map of the region, showed no
correspondance between soil types and measured conductivity
values.

A statistical analysis showed that the conductivity
values possibly had a possible lognormal distribution. This fact
was later verified with the application of the Kolmogorov-3Smirnov
test, for distances higher than 100m, to avoid correlation
between the observations.

In a comparison of the results of the present study with
two previous studies of different area sizes (Nurul, 1984 and
Tan, 1986), a clear increase of the variance with the area size
was observed.

In the spatial variability analysis of the present study
data set, a pure nugget effect was observed, which can be
explained by the fact that variations in the data exist at a

scale smaller than the sampling distances.
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The variogram of the present study, differs from the

variograms of the two previous ones, due to the effect of the
plot size. After a proportional effect scaling, the difference
with one of them is eliminated. It would be interesting to

compare more data sets than available.

The total variogram of the three data sets (log of K
values), was computed and modeled by a linear type model with a
sill of 3.8 and a range of 143m.

The kriging technique has been applied, based on the
above mentioned model. The value of conductivity in points of
observation of the previous studies was estimated. The results
show a tendency for overestimation of the conductivity, though
there is no statistically significant difference between
observations and estimations.

Finally, the geostatistical method proves to be able to
provide an approach for studying the spatial variability of
hydraulic conductivity, and the area size of the plot proves to

play an important role in such studies.
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Appendix A
Program VARIO1




Program VARIO1
1. Introduction.

The program VARIO1 is used for the computation of the
statistics, and the distribution analysis with the Kolmogorov-
Smirnov goodness of fit test. It is adopted from “Geostatistical
ore reserve estimation' (David 1977) with several alterations. It
is working with FORTRAN 77. The graph plotting is with PLOTT 83.

Its application is as follows:

1. with different grid systems (in x or y direction).

2. with different direction orientation for the variogram to
be computed.

3. with different angular regularisation.

4. option for working with the logarithm of the parameter.

5. option for distribution analysis with Kolmogorov-Smirnov

goodness of fit test.

2. Input data files.

There are two input data files which have to be created.
The first file "DATAO1" contains the necessary information of how
the variogram is to be computed. The next file "DANEW" consists
of a heading which is to be print in the output, and the
tabulated values of the parameter. The program is written in a

format which will ask for the name of the input files.
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2.1. DATAO1 input file.

Card No. Column No.
1 1-2
2 1-10
3 1-10
4 1-10
5 1-10
& 1-10
7 1-4
8 1-2

Format Symbol

12 ILOG

F10.5 STEP

F10.5 BORN
F10.5 IDEF
F10.0 PHI
F10.0 PS1
I4 NS
I12 ICU

8%

Description

1 when working with
logarithmic values

0 when working with
the parameter

The interval with
which the variograms
have to be computed
The maximum value of
the parameter
Notation of the
parameter

Direction of the
computation

Angular
regularisation of the
variogram

Total number of data
1 for the cumulative
distribution analysis

0 if not required




2.2. DANEW input file.

Card No. Column No. Format Symbol Description

1-2 1-80 2(20A4) Icon The heading to be

printed in the output

3-103 7-16 F10.5 Y{(N) The y-coordinate
17-26 F10.5 X(ND The x-coordinate
27-36 F10.7 A(N) The value of the
parameter

N.B. The plotting file and library must be called before

compilation.

3. Output files.

There are two output files. The first, RESULT1, is
created only in case that the distribution analysis is required,
and contains it. The second one, RESULT3, contains the values of

statistical parameters of the data set, and the variogram.
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[s121slslelelelnieisinielyi

(o I o]

elelgle)

*H
*
* %

%%

R 22 ]

1

2

15
17

30
70

5

160
125
170
180

200

L2 2 2 2 8 2 2 2L

VARIOQ3 *
LTI TR S

THIS PROGRAM IS FOR THE CALCULATION OF
1. THE MEAN , VARIANCE. SKEWNESS_AND KURTOSIS
2. THE DISTRIBUTION ANALYSIS WITH KOLMOGOROV-

GOODNESS OF FIT TEST OPTION.
3. AND THE VARIOGRAMS WITH DIFFERENT INTERVAL.,

DIRECTION, ANG. REGULARISATION AND LOGARITHM

OPTIONS OF A SET OF FIELD DATA.

PROGRAM VARI

01 )
DIMENSION 1COM(40), DIV(250), PERC (250). TD(250)
DIMENSION A(250), X(250), Y(250), 2(250), ZZ(250}
ey S e e e G diaheindoisletlalahalie

DIMENSION DZMAX(40)., IMAX(40), JMAX(40)
B0 AT 06 3 S T 36 A B

O T A Al A
COMMON ST, MOY.: NS, NX. ILOG
REAL MOY, M1, M2
INTEGER EFF (40), BINF, BSUP
CHARACTER DATAQ1#7. MADATA#®7

DIMENSION DISTOT(40),S1(40).82(40)

DIMENSION XG(42).YG(42)
WRITE(%, 1)

SMIRNOV

FORMAT (10X, ‘GIVE THE NAME OF THE TWO DATA FILES‘, /.

$ 10X, ‘(7 CHARACTERS) )
READ (%, 2)DATAO1L

FORMAT (A7)

READ (%, 2)MADATA

OPEN(1., FILE=DATAO1)

OPEN(2, FILE=MADATA)

OPEN(3, FILE="RESULT1 ‘)
OPEN(4, FILE=‘RESULT3")

READING INPUT DATA

READ(1, 15)ILOG
FORMAT(I2)

FORMA

Qcwu
o B
4

mlA
amm
a>>
d=la)
P~
m
N

READ (
FGRMA

Q= OBO~=N
[« DIV o L
aa nNoX O
Lo b o]

oc

P L I N B
D oarr = Z N
o 3
he
n
[y
o

D Z A O N TIN D L) 4 T et

moeonrnOOnhLk

) L 2T T =W

>~
m

¢ 20A8)
UH:Y(N);;%NJ.A(N)

AQO T

0
ND=NO+1
CONTINUE
IF(ILOG. EQ. 0) GC TO 1235
BORN=ALOG10(BORN)

WRITE(3, 170)NS

FORMAT(1H . ‘NUMBER OF SAMPLES=
DO 180 LP3=1,NS ‘
Z(LPI)=A(LP3)

APSI=22. / PS1/3460,
T1=COS{APSI
APHI=22. /7. #PHI1/180.
CA=COS(APHI)

SA=SIN(AFHI)

DD 200 LPZ2=1.40

EFF{(LFP2)=0

DISTOT (LP2)=0.

S1(LP2)=0.

S2(LP2)=0.

CONTINUE

Q
1
7
3
L
7.

(
}
1
3
*
)

21

‘', 14)




c ¥
g COMPUTATION OF HEAN-VARIANCE.SKEHNEBS AND KURTOSIS

227 SM=SB=S5(C=5D=0
DO 215 LP1=1, NS
1€ (Z(LP1).EQ.0) GO TO 215
NN=NN+1
ZLP=Z(LP1)
EM=SM+Z(LP1)
SB=SB+ZLP#ZILP
SC=5C+ZLPax3
SD=SD+ZLP*%4
215 CONTINUE
WRITE(#, #) ‘SUM="‘, §M
MOY=SM/FLOAT(NS)
VRNCE=SB/ (NS—1)-(MOY#%2)#NS/ (NS-1)
ST=SQRT(VRNCE) .
SKEW=(SC/FLOAT(NS)—3. #MOY#SB/FLOAT(NS)+2. #*MOY#&3) /ET##3
CURT=(SD/FLOAT(NS)—4.iHUY*SC/FLOAT(NS)+6.GHDY*GZ*SB/
SFLOAT(NS) -3, #MOY#%4) /ST¥#4

DISTIRBUTION ANALYSIS WITH K-S GOODNESS OF FIT TEST

IF(ICU. EQG. 0) GD TO 230
NX=0

DO 25 I=1,NS
IF(Z(I),EQ.0) GO TO 25
NX=NX+1
ZZ(NX)I=Z(1}
25 CONTINUE
DO 28 I=1, NX
DO 26 J=1.NX
IF(ZZ(J).GT. ZZ(1)) GO TO 37
GO TO 26
37 H=ZZ(I)
ZZ(1)=ZZ¢(J)
ZZ(J)=H
26 CONTINUE
28 CONTINUE
D2=0
WRITE(3, 147)
147 FORMAT(///:3X: ‘RANK‘, 2X, *Z VAL *, 2X, “NOR. VAL *, 2X. ‘EXPT. PROB‘.
‘DD 106 3 ‘THEQ. PROB‘. 5X, ‘D1’, &X: ‘D27, &%, ‘D*)

=1, NX
DIV(S)=(ZZ(J)-MOY) /ST
106 TD(J)=0. S# (1. +ERF(DIV(J) /SGRT(2. }))
DO 91 I=1,NX
PERC(I)=(I~0. 5)/NX
DIV(IY=(ZZ2(I)
TDCI)=0, S#(
D1=ABS(PERC(I
D=D1
1
X

olale)

IF(D2.G¢T.D
IF{D. CT. DM
U=I+1
WRITE(3, 149)1, 2 ).
?1 D2=ABS(PERC(1I1)
WRITE(3, 179)DMX
17¢ FORMAY (/77" DMAX = ¢, F@. 3)
0149 FORMAT (14, 2F8. 3, 2F12. 7, 3F8. 3)

g RESULTS OF K-S TEST FOR SIGNIF. LEVELS OF 9% AND 10%

NUM1=5
NUM2=10
FS5=1,L 36/SGRT(NS+, O)
F10=1, 22/SGRT(NS+, 0)
IF (F5.GT.DMX) THEN
ELSgRITE(SoIOOI)NUHI:DHX-FS
WRITE(3, 1002)NUM1, DMX, FS
WRITE(J3, *)
IF (F10.GT. DMX) THEN
ELSgRITE(S.1001)NUH2.DHX.F10
WRITE(3, 1002)NUMR2, DMX. F10

PERC(I).TD(I),D1.D2,D

[ 2]
T
Pl ]
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1001 FORMAT(//,3X. ‘THE NORMALITY OF THE OBSERVATIONS IS ACCEPTED'
#, /3%, ‘FOR SIGNIFICANCE LEVEL ‘. 3X, 12, ‘%’. /7, 3X, ‘SINCE DMAX=",

#2X, FB. 3, 3X, ‘AND THE LIMIT 1S°,2X.F8. 3)
1002 FORMAT(/7, 3%, ‘THE NORMALITY OF THE OBSERVATIONS 1S REJECTED '’

%, 7,3X, ‘FOR SIGNIFICANCE LEVEL ", 3X. 12, ‘4. /. 3X, ‘SINCE DMAX=",
#2X,FB. 3, 3X, ‘AND THE LIMIT 15°.2X,F8.3)

WRITE{(3, 137)MOY. ST
137 FORMAT(//7, 10X, ‘THE MEAN IS ‘,F10.6&,3X, ‘AND STD. IS ', F10. &)

CALL GROPEN

C
g GRAPH PLOTTING OF THE THEORE. AND EXPERI. CURVES
CALL PLSIZE(25..153.)
CALL BOUNDS(0..,0..0..,0.)
CALL OPTION(’TL’)
CALL XLABEL (‘_THE RANKED RESIDUALS ‘)
CALL YLABEL(‘"THE EXP AND THEO. DISTRIBUTIONS_)
CALL CUTYPE(‘DA‘) '
DO 20 I=1, NX
X1=ZZ(I)
YI=PERC(1I)
20 CALL DRAW(X1.Y1)
CALL CUNEXT
CALL CUTYPE(‘S0‘)
DO 40 I=1,NX
X1=27(])
Y2=TD(1I)
40 CALL DRAW(X1.,Y2)
CALL CUNEXT
CALL CUTYPE(‘SD°)
CALL DRAW(-2.2,1.2)
CalLL DRAW(-1.7,1.2)
CALL ADDCMT(-1.5.1.2, ‘/_THED. DISTRIBUTION_)
CALL CUNEXT
CALL CUTYPE(‘DA’)
CALL DRAW(-2.2.1.135)
CALL DRAW(=-1.7.1.13)
CALL ADDCMT(-1.5,1.15, ‘_EXP. DISTRIBUTION_ °)}
c CALL CRCLOS
g COMPUTATION OF VARIOGRAM
230 DO 290 LP1=1,NS
IF(Z(LP1).EQ.0) €O TO 290
IF(Z(LP1)—-BORN) 240,290,270
240 I2=LP1+]1
IF(I2. GT.NS) GO TO 270
DO 280 LP2=12. NS
IF (Z(LP2).EQ.0) GO TO 280
IF (Z(LP2)-BORN)250. 280, 280
250 D2=(X(LP1)-X(LP2) ) #u2+(Y(LP1)-Y(LP2)})#22
IF(D2, LT. 0. 000001) 60 TO 280
D1=8QGRT(D2)
CC=(X(LPI1)—X(LP2))#CA/D1+(Y(LP1)-Y(LP2))2GA/D1
CC1=ABS(CC)
IF(CC1.GT. T1) GO TO 260
GO TO 280

260 RR=D1/STEP
IF(RR-40. ) 270,280,280

270 IC=RR+1
DELTZ=CCx(Z(LP1)-Z(LP2))/CC1
EFF(ICI=EFF(IC)+1
81(IC)=S1(IC)+DELTZ
S2(IC)=S2(IC)+DELTZ#%2
DISTOT(1C)=DISTOT(IC)+D1

i L L e L bbb babalaioh Al ol Ak i il

IF (DZMAX(IC).GT. DELTZ) GO TO 280
IMAX(IC)=LP1
JMAX(IC)=LP2

DZMAX{IC)=DELTZ
R T T L Trrryyt i Y Y TS S 2 LS S Al LS R ARk kb Ak ARl
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280 CONTINUE
290 CONTINUE
300 ITEN=IDEF
217 WRITE(4, 310 oM, PSI
. (W 'VARIODGRAM,///,
’ 7X. 20A4/1H ), 40X,

2
E A FIELD OF ‘,F4,0.
&

210 FORMAT(1

S IN EACH DIRECTION ),/
(1H. ))

H., 14X, 1H, }

TEN

00X, 1H. , 59X, A4, 5X, 1H. )
T

WRITE(

340 FORMAT(1
1 63X.16
WRITE(4,

350 FORMAT(1
WRITE(4,

360 FORMAT(1H
WRITE(4, 3

370 FORHAT ln

s
???TEP IN METER = «E10. 4,
B

ORN
+» 27HUPPER LIMIT FOR Z = +E10,. 4, 63X, 14(1H.))

)
100X, 1H. , 12X: 1H. )

IMOY., PHI

éGENERAL MEAN OF 2 = ',E10. 4, 62X,
)

X:F4. 0, 86X 1H. )

382 )} SKE

X, ‘GENERAL SKEWNESS OF Z = ‘,E10.4,/)
384 )CURT

a'GENERﬁL KURTOSIS OF Z = *%EI10.4,/)

1H .IEX:‘DISTANCE IN METER NO. OF PAIRS DRIFT
11PT=0 VARIOGRAM AVERAGE DISTANCE MAXVAR PAIR’. //)

s DO 430 LP2=1,40
; IF(EFF(LP2)) 430,430,420
Fr 420 M1=51(LP2)/FLOAT(EFF(LP2))
i M2=0. S#S2(LP2) /FLOAT(EFF(LP
DISMOY=DISTAT(LP2) /FLOAT (EF.
BINF=STEP#LP2-STEP
il BSUP=STEP#LP2
¥ IPT=IPT+1
: XG(IPT)=DISMOY

YG(IPT)=M2

WRITE (4, 425)BINF, BESUP, EFF(LP2), M1, M2, DISMOY, IMAXCIC), JMAXCIC)

IC=IC+1
425 FURHAT(!X-!QX-I435H -——=,14,8X%X,168.7X,E10. 3, 4X,E13. 4, 14X, F6. 1

*, 10X, 12, *—",

430 CONTINUE

1
: 380 ) VRNCE

1H_, ‘CENERAL VARIANCE OF Z ‘', E10. 4, 62X, 14C1IH. ) /)
1

?

1

2
F

)}
(LP21)

9 FORMAT(3X, ‘99. 99"}
END

20. 11. 37. UCLP, 9B, OEFTERM, O. 320KLNS.
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Appendix B
Program KRIGO1




Program KRIGO1

1. Introduction.

The program KRIGO1 is used for kriging. The main output
is the kriging estimator. It is adopted from 'Geostatistical ore
reserve estimation" (David 1977) with some alterations. It works
on FORTRAN 77.

It can be applied as follows:

1. The number of kriged points can vary.

2. The kriging position can be chosen as desired.

3. It includes the option of working with logarithmic values.

4. It includes the option of filtering out the nugget effect.

5. There 1is the possibility of choosing different type of

variogram models.

2. Input data files.

Two input data files are required. o©One (DANEW, as used
in program VARIO1), containes the observed values of the
parameter. The other one, DATAO7, should contain the information

required for kriging. The contents of this file should be as

follows;
Card No. Col. No. Format Symbol Description
1 1-2 I2 NX The number of points to
2 1-2 12 NY be kriged along the x and
y direction.
3 1-10 F10.0 XC The kriged position's

@5




10

11

12

13

1-10 F10.0 YC
i-10 F10.0 PASX
1-10 F10.0 PASY
1-3 I3 NP
1-3 13 NT
1-3 I3 NU
1-3 13 NG
1-10 F10.0 COEF1
1-10 F10.0 COEF2
1-10 F10.0 COEF3

26

coordinates

Interval between each
kriged point in the x and
y direction.

Number of measured points
1 for working with logar.
values, 0 when not req.

1 for nugget effect
filtering, O when it is
not required.

Type of variogram model
to be used:

1 - for spherical

2 - for linear

3 - for power type

4 - for logarithmic

5 - for exponential

6 - for Gaussian

The nugget effect

Value of the 2nd coef.

Value of the 3rd coef.




PROGRAM KWRJGEG]

THIS IS A POINT KR
WITH NUGGET FILTER

IGING PROGRAMME
ING OPTION

lalelinighe

[elely)

FOR A CRID NX BY NY

LABORATORY OF HYDROLOGY. YUB, 1786.
DIMENSION X(120).Y¥(120), T(120)
DIMENSION 1COMCAQ)
DIMENSION A(JEO.120),B(120).GAHM(120).CDEF(S)
DIMENSION XF{1A),YF{14)
COMMON NG. COEF. NU
OPENC(1, FILE="‘DATAD7 ")
OPEN(2, FILE=‘DANEWZ ")
DPEN(E.FILE=’RESULT5')

READING INPUT DATA

READ(1, 24)NX
FORMAT (12}
READ(1, 24 )NY
READ(1. 28)XC
FORMAT(F10. 0)
READ(1,28)YC
READ(1.,28)PASX
READ(1, 28)PASY
READ(1, 3&6)NF
FORMAT(13)
READ(1, 42)NT
FORMAT(I1)
READ{1., 42 )NV
READ(1, 42)NG
READ(1, 27)COEF (1)
FORMAT(F10. Q)
29)COEF (2)
29)COEF (3)

)

y ‘THE

3’THE X—-DIRECTON IS ‘.1
1)

24

28

36
42

29

Y
NOS. OF POINTS TO_BE KRIGED ALONG’. /.
, 23X, 'Y-DIRECTION IS «,12,.2%: / /)

%XC. YC
’l‘ EIS. 41 ’l 'J

‘THE COORD. OF THE 1ST GR1D PT. IS

INAR;

JPASX, PASY

, ‘THE INTERVAL BET. EACH GRID PT. IS
¢

)

Eg.l.//}
, ‘THE NOS. OF MEASURED VALUES =,13. 7/}

YTHEN
)CGEF(l);CDEF(E).CUEF(S)
L

3
WRITE(
54 FORMAT

%
WRITE (3,
56 FORMAT(10
3

%
WRITE(
58 FORMAT(
IF(NG. E
WRITE(3
62$FGRMAT(

‘+F3. 1,

‘THE VARIOGRAM 1S A SPHERICAL TYPE WITH’. /7,
’CDEF(1)=‘.F18.8;/;10X:'CDEF(2)='.FIB.B-/-

‘COEF(3)=',F18.8, /7]

G. EQ. 2) THEN

4)COEF(1).€C0O
» ‘THE VARIO

$

ELSE IF

WRITE(3
64$FURHAT(

(1 4

1S
W,
'8, /7)

1

1
(2),COEF(J)
AM IS A POWER TYPE WITH . /.
g.B./:IOX-’CUEF(2)=’;FIB.91/.

.8.//)

), COEF (3}

LOG. TYPE WITH’, /:
10X:’CUEF(2)=':F18.B;/:
}

COEF(3)
LINEAR TYPE
10X, ‘COEF(2)=

>

WITH . /s
. 'COEF(1 ‘v F18.8., /)

E

G
Y=’y

¢ ‘COEF(3)=",

F
R
F
F

1
=
=

F(3)

EXPO. TYPE WITH’. /.

' OX-'COEF(2)='.FIB.B./-
. 'COEF(3)=

C. EQ. 6) THEN

X
X
2)COEF (1), COEF
X GR
1
g

*

3)

AUSSIAN TYPE WITH®.
10X, ‘“COEF(2)=":
8.8,/7/)

. ‘THE VARIO
OX, ‘COEF(1)=""
.8, /. 10X, ‘COEF

/s
F1

0
ENDIF
IF(NU. EG. 1) THEN

WRITE(3.74) .
74 FORMAT (10X, ‘THE COMPUTATION 15 WITH THE NUGGET’. /.
% ‘FILTERING. ", //)

10X,
ELSE

WRITE(3, 76)
76 FORMAT (10X, ‘THE COMPUTATION 15 WITHOUT NUGGET ‘. /.
1

3 OX. ‘FILTERING. *, //)
ENDIF
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ons

Fal

READ(2. 78) 1COM
/78 FORMAT (2O (A4), /7, 20(A4))
DO 102 YI=1.NF
READ (2. 14)X(I),¥(1),T(I)
14 FORMAT(&X, 2F 10, 5, F10.7)
END OF READING INPUT FILES

EG. 0O) GO TO 102
EG. ©0) GO TO 102
DGLO(T(I))

,8X: X—CODRD ", 6X: "VALUES )
Y. TCI)
). 53X+ E10. 3)

Dgzago K=1.,L

CALL GAMMA (X(L),Y(L), X(K),Y{K), G, ZZ)
300 A(L.K)=A(K,L)=G

DO 400 L=1, NP
400 A(NN,L)=A(L.NN)=1.

ACNN. NN)=0.

CALL MATINV (A, NN, DET)

IF(NT . EQG. 1)G0 TO 420

WRITE(3, 450)

450 FORMAT(/////.9X, *X—-COORD. *, 3X, ‘Y~CODRD, “, 3X, ‘KRIGED‘,
$ 12X, "KRIGED’, 8X, ‘KRIGED’, /., 31X, ‘VALUES”,
€ 11X, ‘“VARIANCE ‘, 8%, ‘STD. DEV. *)
GO 7O 410
420 WRITE(3, 430)
430 FORMAT(/////,9X, 'X—COORD, *, 3X, ‘Y=COORD. 7, 5X, "KRIGED",
% 3¢10X, ‘KRIGED ). /. 31X, "VALUES(LOG) /', 7X, ‘VALUES ‘,
3 9X. ‘VARIANCE ‘. 8X, ‘STD, DEV. )
410 DO 200 LP1=1.NX
DO 200 LP2=1.NY
XCEN=XC+(LP1-1)*PASX

YCEN=YC+(LPZ-1)*PASY

gg ?OO L=1, NP

gAL% GAMMA(X{L), Y(L)., XGCEN.: YCEN, ¢. ZZ)
200 CUNTINUE

B(NN)=1.

DO 510 L=1,NN

GAMM (L) =0.

DO 502 K=1

GAMM(L)—A(L-K)*B(K)+GAHM(L)
002 CONTINUE

SGAMM=S5GAMM+CAMM (L)
©10 CONTINUE

SOMX=0.

SOML=0.

DO &00 L=1,
600 SDHX=SDMX+T(L)*GAMM(L)

SK=0.

DO 610 L=1.,NN
610 SK=SK+GAMM(L )#B(L)

IF (NU.EQ. 1) SK=SK+COEF(1)

IF(SK. LE. O0) SK=0

SKRT=SGRT (SK)

IF{NT.EQ. 1) GO TO &30

WRITE(3, 700) XCEN, YCEN, SOMX. SK. SKRT
700 FORMAT(9X.2F10. 2, 3E16. 7}

GO TO 200
630 ASOMX=10##S0MX

WRITE(3, 720) XCEN, YCEN, SOMX., ASOMX, SK, SKRT
720 FORMAT(S5X.2F10. 2, 4E16. 7))
200 CONTINUE

STOP

END

28
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SUBROUTINE GAMMA (X1, Y1, X2, Y2, GAMMDB, Z22)
DIMENSION COEF (3)
COMMON NG. COEF, NU
D=SORT((X1~-X2)##2+(Y1-Y2)##d)
IF(NG. EG. 1) THEN
IF(D. GT. COEF (3) ) THEN
GAMMB=COEF (1)+0. S¥COEF (2} # (3#D/COEF (3)~(D/COEF (3) ##3) )
ELSE
GAMMB=COEF {1)+COEF(2)
ENDIF
ELSE IF(NG, L EQ. 2) THEN
IF(D.GT.COEF(3)) THEN
ECEEB=COEF(1)+CUEF(2)*CDEF(3)
GAMMB=COEF (1) +CDEF (2) %D
ENDIF
ELSE IF (NG, EG. 3) THEN
GAMMB=COEF (1 )+COEF (2) #D**COEF (3)
ELSE IF(NG.EQ.4) THEN
GAMMB=COEF (1 }+COEF (2) #ALOG(1+COEF (3) *D)
ELSE IF(NG. EQ. 5) THEN
GAMMB=COEF (1)+COEF (2) % (1-EXP (-(COEF(3)#D)))
ELSE IF (NG.EQ. &) THEN
gang=CDEF(1)+COEF(2)*(!—EXP(—(CUEF(S)*D**E)))
IF(ZZ. EG. 1) THEN
IF(NU. EG. 1)GAMMB=GAMMB—COEF (1)
ENDIF )
IF(D.LE. 0. 001) GAMMB=0.0
RETURN
END

SUBROUTINE MATINV (ARRAY, NORDER,DET)
DIMENSION ARRAY (120, 120). IK(120), JK(120)

10 DET = 1.
i1 DO 100 K=1, NORDER

FIND LARGEST ELEMENT ARRAY(I.,J) IN REST OF MATRIX

AMAX = 0.
21 DO 30 I=WK,NORDER

DO 30 J=WK. NORDER
23 IF(ABS(AMAX)-ABS(ARRAY(I, J))) 24,24, 30
24 AMAX = ARRAY(I. J)

IK(K) = 1

JRIK) = J

30 CONTINUE
INTERCHANGE ROWS AND COLUMNS TO PUT AMAX IN ARRAY (K. K)

31 IF{(AMAX) 41,32:41

32 DET
GOTO 140
41 I = IK(K)
IF(I--K) 21,51,43
43 DO 50 J=1, NORDER
SAVE = ARRAY{K.J)
ARRAY (K, J) = ARRAY(I,J)
50 ARRAY(I.J) = —-SAVE
51 J = JA(K)
IF(J-K) 21.61,93
53 DO &0 I=1,NORDER
SAVE = ARRAY(I.HK)
ARRAY (I, K) = ARRAY(I.J)
40 ARRAY (I, J) = —S5AVE

P




4

TR TR

C
C ACCUMULATE ELEMENTS OF INVERSE MATRIX
C

61 DO 70 I=1, NORDER
IF(I-K) &3,70,:63
63 ARRAY (I, K} = —ARRAY(I,HK}/AMAX
70 CONTINUVE
71 DO 80 I=1, NORDER
DO 80 J=1, NORDER
IF(I-K) 74,80, 74
74 IF(J-K) 75,80,75
75 ARRAY(I,J) = ARRAY(I., J)+ARRAY (I, K)*ARRAY (K, J)
B8O CONTINUE
81 DO 90 J=1, NORDER
IF(J-K) 83,790,83
83 ARRAY (K. J) = ARRAY(K, J) /AMAX
?0 CONTINUE
ARRAY (K, K) = 1. 7AMAX
100 DET = DET#AMAX

RESTORE ORDERRING OF MATRIX

101 DU 130 L=1, NORDER
K NORDER-L+1
J = TIK(K) :
IF{(J-¥K) 111,111,105
105 DO 110 I=1, NORDER
SAVE = ARRAY(I,HK)

[gigle]

ARRAY (I, K) = —ARRAY(I.J)
110 ARRAY(I,J) = SAVE
111 I = JK(K)
IF(I-K) 130,130,113
113 DO 120 J=1, NORDER
SAVE = ARRAY(K;J)
ARRAY (K. J) = —ARRAY(I, J)
120 ARRAY(I.J) = SAVE

130 CONTINUE
0 RETURN
END

12. 47, 22. UCLP, SB, OEFTERM, 0. 256KLNS.
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